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About this text.
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analyse it in all possible ways including looking at the nullclines, an invariant line,
steady states, linearization etc. We use kinetics proposed by Monod in the 1950’s,
similar to the Michaelis-Menten kinetics in enzyme kinetics.
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by me: Per Erik Strandberg, student at the Biotechnical Program. But I have later
changed it to include some pictures and the optimization, for completeness. It is
written with the help of LATEX.

The natural sequel to this report is a Bachelor of Arts final thesis in applied
mathematics: “Mathematical Models of biological growth” at the moment being
processed. Once it is complete it will be “published” at my homepage2, where you
also can find the latest version of this text:

Please send me feedback, comments, to: perst586@student.liu.se

1Univeristy of Linköping, Sweden, the technical faculty.
2http://www.midgard.liu.se/∼b00perst/index.htm
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1 Introduction.

The chemostat is a device used for harvesting bacteria3. A chemostat is made
of two main parts; a nutrient reservior, and a growth-chamber, reactor, in which
the bacteria reproduce.

Via an inflow from the reservior fresh nutrition is added and from an outflow
bacteria are harvested.

?

-N , C

F , N , C

C0, F

The Chemostat, its inflow of nutrition, its growth, and its
outflow.

Section 2: We start our journey by looking at some simple models of biological
growth: the exponential growth and the logistic equation.

Section 3: Here we will derive the chemostat equations. We will look at kinet-
ics and reduce the number of parameters.

Section 4: In analysing the chemostat equations we look at equilibrium solu-
tions, null clines, linearized equations, we also find an invariant line.

Section 5: In this section an other model, very similar to the chemostat is
investigated, allowing us to use the tools created in earlier sections.

Section 6: A review.

The Appendix: Some mathematical tools are explained in the Appendix. A
matlab m-file is also displayed.

3Bacteria, yeast, other micro-organisms, or products/chemicals made by them.
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2 Two simple models of biological growth.

As a theoretical background we will look at what can be considered a chemostat
without in- or out-flow, meaning: Fin = Fout = 0 6= F (t).

2.1 Exponential growth.

An extremely simple model could be dN
dt = k ·N corresponding to (birth-death)

of bacteria, with k = const > 0, giving

N(t) = N0e
kt (1)

This is truly a too simple model. To limit the production of organisms we
introduce the variable C describing the concentration of nutrient4, into the
dynamic equations.

2.2 The logistic equation.

Let us assume that dN
dt = k ·N, with k = k(C) = k ·C, and that dC

dt = −αkCN ,
meaning that each individual produces k units of offspring per time unit, for
example 1.13. With α = const > 0 we could mean that each produced unit of
offspring requires α units of nutrition. This model is in correspondence with
our intuition; CN could be interpreted as how often bacteria and food “meet”
(giving the bacteria an opportunity to reproduce and consume).

We get a system of ODE’s:{
dN
dt = kCN (a)
dC
dt = −αkCN (b)

Performing α(a)+(b) we get: d
dt (C +αN) = 0, thus (C +αN)(t) =constant.

In particular with t = 0 and N(0) = N0 ≈ 0 (or at least small in comparison to a
normal N(t)) we have C(0)+αN(0) ≈ C0 since N0 small ⇒ C(t) = C0−αN(t)
giving us a reason to eliminate (b), and rewrite (a):

dN

dt
= k(C0 − αN︸ ︷︷ ︸

Cold(t)

)N = kC0︸︷︷︸
r>0

(1− N

C0/α︸ ︷︷ ︸
B>0

)N = r(1− N

B
)N

By changing some factors we have reduced our system of ODE’s to one single
equation, called the logistic equation:

dN

dt
= r(1− N

B
)N (2)

Where r(1 − N
B ) corresponds to our old k in (1), called an intrinsic5 growth-

speed, and B corresponds to the carrying capacity. Similarly, by eliminating N
instead of C, we quickly find that dC

dt = −αr(1 − C
αB )C, however, this term is

not necessarily as interesting as the bacteria-term.
When analysing (2) we discover several interesting things:

4Concentration of nutrient or concentration of the limiting nutrient.
5Translated to Swedish “intrinsic” could be: “inre”, “inneboende”, “egentlig”, or “reell”.
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For small N when 0 < N � B we can approximate (2) to (1), our model
corresponds to observations of exponential growth for starting cultures.

The factor -NN corresponds to a crowding effect, inhibiting the reproduction
rate.

The sign of (2) is important to analyse. Let us assume that N ≥ 0. We also
know that r > 0. Meaning that (1 − N

B ) is what determines the sign of
dN
dt .

N = 0⇒ dN
dt = 0, a trivial solution, there is no population;

0 < N < B ⇒ (1− N
B ) > 0, the population grows;

N = B ⇒ dN
dt = 0, constant population; and

N > B ⇒ dN
dt < 0, decreasing population.

We now know that the model corresponds to our intuition: a population at
zero will not give rise of a population. But even the smallest population
will grow. If ever N=B we will get a constant population. Finally: if
N > B, N will eventually diminish towards N = B. N = 0 and N = B
equilibrium solutions.

One solution to (2) is:

N(t) =
N0B

N0 + (B −N0)e−rt
, if 0 < N0 < B (3)

this is easy to control with derivation.

We have seen the birth of this well-known curve from a simple model, we
will in the next section move on, introduce the in- and out-flow, and make an
investigation of the creation of the chemostat.
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3 The chemostat equations.

The purpose of the chemostat is to have a quasi-constant N and C, allowing us
to harvest at a constant (non-stop) rate. We must adjust our logistic equation
introducing the flow, in doing so, we will also define the units used in our
growth-chamber.

We will also reduce the degrees of freedom of the Chemostat by introducing
the dimensionless form.

3.1 Enter: The flow, F.

F = Fin = Fout: volume/time. With Fin comes C0: “mass”/volume6. In the
reactor we have N : number, and C: mass/volume.

From (2) we add some reasonable terms corresponding to in- and out-flow of
the nutrition-solution (thus concentration) and outflow of bacteria, giving us:

dN
dt =

mod.︷ ︸︸ ︷
K(C)N

new︷ ︸︸ ︷
−F

N

V
dC
dt = −α K(C)N︸ ︷︷ ︸

mod.

N −F
C

V
+ F

C0

V︸ ︷︷ ︸
new

(4)

It seems reasonable to assume that N/V is an amount of the bacteria-density,
multiplying it with F gives us the amount of bacteria being flushed away. Sim-
ilar to N, −FC/V corresponds to the outflow, and +FC0/V to the inflow of
nutrition.

3.2 The Michaelis-Menten-kinetics.

Let us review our K(C). Is it reasonable to have K(C) = kC? No, because
bacteria can not, and will not, reproduce at infinite speed just because we
insert them in a reactor with infinite concentration.7 So, let us introduce a
little more natural reproduction-constant-function K(C). One way to do this is
to introduce the Michaelis-Menten-kinetics.

Experimental data and our common sense tells us that we want the re-
production-constant to be almost linear at small positive values for C, but we
also want an upper limit for K so that: K(C) C→∞−→ Kmax. We introduce the
Michaelis-Menten-kinetics:

K(C) = Kmax
C

Kn + C

An analysis of K(C) is needed, do we achieve our goals?

Small C’s give us K(C) = C Kmax

Kn
, if we can assume C � Kn, thus almost

linear.

The maximum K, Kmax, is never reached, no matter how great C gets. We
have Kn > 0⇔ Kn + C > C ⇔ K(C) < Kmax, ∀ C.

6“Mass” could be moles, kilograms, molecules, etc.
7Infinite concentration is, by the way, also not realistic. . .
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The limit K(C) C→∞−→ Kmax is what we wanted. And we can let Kmax be the
maximal fraction to multiply N with if there are great recourses.

Deriving K(C) gives us K ′(C) = Kmax
Kn

(Kn+C)2
> 0, something positive, we

have asymptotical growth towards Kmax.

The new constant Kn can be given an interesting meaning if introduced in
K(C): K(Kn) = Kmax

Kn

Kn+Kn
= 1

2Kmax. It corresponds to the concentra-
tion at which K = 1

2Kmax

Summarized, the model can be described as:{ dN
dt = Kmax

C
Kn+C N − F N

V
dC
dt = −αKmax

C
Kn+C N − F C

V + F C0
V

(5)

3.3 The dimensionless form of the chemostat.

A quick glance at our equations show that we have a number of variable con-
stants: Kmax, Kn, F

V , α, and C0. Each one of them is important and necessary,
but is there a way for us to reduce them somehow? The answer is yes, and
we will see that it is possible to eliminate three of our constants (we eliminate
five of them and introduce two new ones, this is possible since we have five
parameters, and three dimensions).

As the title of this subsection suggests, we will actually eliminate the di-
mensions/units of the equations, but first we must investigate our constants,
what units do they invisibly carry around? We start by investigating the first
relation:

dim[dN
dt ] = number

time (here we assume dim[N ] = number and dim[t] = time),
thus: dim[KmaxNC

(Kn+C) ] = number
time . With dim[C] = mass

volume we get dim[Kn] = mass
volume

in order to keep Kn + C meaningful, only allowing dim[Kmax] = 1
time .

Our second relation rewards us with dim[dC
dt ] = mass

volume·time , and since we
know that dim[C] = mass

volume , we get dim[C0] = mass
volume . And with the above

relations we force dim[α] = mass
volume·number !

And now, to simplify things we replace C, N , and t with C · Ĉ, N · N̂ , and
t · t̂. Where Ĉ, N̂ and t̂ corresponds to the unit-dimension, whatever they may
be.8 Our beautiful (5) will now for a moment be replaced with:{

dN
dt ·

N̂
t̂

= Kmax
CĈ

Kn+CĈ
NN̂ − F NN̂

V

dC
dt ·

Ĉ
t̂

= −αKmax
CĈ

Kn+CĈ
NN̂ − F CĈ

V + F C0
V

Now, to eliminate the dimensions, we multiply the dN -row with t̂/N̂ , and
the dC-row with t̂/Ĉ, rewarding us with. . .{

dN
dt = Kmaxt̂ CĈ

Kn+CĈ
N − F Nt̂

V

dC
dt = −αKmax

NN̂t̂C
Kn+CĈ

− F Ct̂
V + F C0 t̂

V Ĉ

8Note that t̂ could be a second, a year, 3.25489677 minutes, etc, N̂ could be one, twelve or
22.5553 bacterias, and Ĉ could typically be: mol/l, molecules/mm3 or 3.333 lb/gallon.
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. . . allowing us to insert t̂ = V
F , Ĉ = Kn, N̂ = Ĉ

αKmax t̂
= KnF

αKmaxV , and

replace α1 = t̂Kmax = V
F Kmax and α2 = C0

Ĉ
= C0

Kn
= t̂FC0

V Ĉ
. These, mysterious

replacings will reward us with:{ dN
dt = α1( C

1+C )N −N
dC
dt = −( C

1+C )N − C + α2
(6)

Showing that the Chemostat can be reduced to a system with only two
degrees of freedom; α1, α2 being the parameters. Now, the best thing for an
experimentalist would be to find two analytically correct functions: N(N,C)
and C(N,C), but because of (6)’s non-linearity we have little hope of finding
them. Instead we will analyse them and draw conclusions from this.
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4 Analysing the Chemostat equations.

When analysing the Chemostat we will find equilibrium solutions, null-clines,
investigate the parameters α1 and α2 in detail, look at the linearization and the
invariance line.

4.1 Equilibrium solutions of the chemostat.

To be able to find equilibrium solutions we use our recently found relations
letting them equal zero, giving us:{ dN

dt = α1( C
1+C )N −N = 0

dC
dt = −( C

1+C )N − C + α2 = 0
⇒
{

0 = α1( C
1+C )N −N

0 = −( C
1+C )N − C + α2

In trying to solve the first relation we quickly find a trivial solution: N = 0.
Inserting this in the second relation give us C = α2 thus an equilibrium solution
is: (N̄0, C̄0) = (0, α2), so maybe α2 is a kind of stock-nutrient-concentration.

The other, the non-trivial, solution of the first line is a little more in-
spiring. We quickly transform it a little: N = α1( C

1+C )N ⇒ 1 = α1( C
1+C )⇒

(1 + C) = α1C ⇒ 1 = α1C − C ⇒ 1 = C(α1 − 1)⇒ 1
α1−1 = C.

Combining this with the second line, we get:

0 = −(
1

α1−1

1+ 1
α1−1

)N − 1
α1−1 + α2 = − 1

α1−1+1N − 1
α1−1 + α2 =

− 1
α1

N − 1
α1−1 + α2 = 0⇔ 1

α1
N = α2 − 1

α1−1 ⇔
N = α1(α2 − 1

α1−1 )

With our second pair we have two solutions:

(N̄0, C̄0) = (0, α2)
(N̄1, C̄1) =

(
α1(α2 − 1

α1−1 ), 1
α1−1

) (7)

4.2 The parameters α1 and α2.

Now is the time to discuss the two parameters, what are reasonable values?
When do α1 and α2 give us an equation without physical meaning? Can they
be given an intuitive meaning?

We saw that α1 = Kmax

F/V . Giving us the hint that α1 could be interpreted
as a kind of dimensionless reproduction-rate, or even more interestingly: as a
maximum reproduction-rate multiplied by the inverse of a flushing factor.

Combining our intuition with the solutions we found above, we notice: C̄1 =
1

α1−1 for any population to exist, giving us: α1 > 1, and according to our guess,
we must have a fraction larger than one to multiply N with each unit-time
(small values would quickly eliminate it). Meaning that in the competition of
reproduction and flushing, reproduction has to be the winner.

From the trivial solution we notice that C̄0 = α2 = C0
Kn

seems to be some
kind of stock nutrient. But as we will see, this is one way of dealing with α2.
Another way of looking at this parameter is to see it as an inverse number of
Kn. We saw that a small Kn meant that we reached Kmax at a lower C. So a
small Kn means a large α2, and vice versa.
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Looking at our non-trivial solution again we notice that N̄1 = α2− 1
α1−1 > 0

is needed for the population to exist. Requiring α2 > 1
α1−1 . (Thus α2 > 0,

this seems pretty realistic: a concentration can not be negative.) Here we can
see that for small (α1 − 1) (large flushing or weak reproduction) we need α2 to
be large (strong flushing or weak reproduction, requires more food in order to
reproduce faster), and a growing α1 allows α2 to be smaller. This seems logical;
if it is easier to reproduce, you don’t need as much food. . .

4.3 The null clines of the Chemostat.

A good tool to use in investigating the phase-portrait is the null-clines; where
dN
dt = Ṅ = 0, or dC

dt = Ċ = 0.9

Let us begin with the N-relation: 0 = Ṅ = α1( C
1+C )N − N, we notice one

line: N = 0, and continue with the rest: α1( C
1+C )− 1 = 0⇒ C = 1

α1−1 .
Continuing with the null clines for C: 0 = Ċ = −( C

1+C )N−C +α2 = 0 After

some elementary work, we get: N = (α2−C)(1+C)
C . Our two null-clines are:{

Ṅ = 0⇒ (N = 0 or C = 1
α1−1 )

Ċ = 0⇒ N = (α2−C)(1+C)
C

The null clines are easy to draw, and by drawing some vectors in the right
places, we can get a pretty good idea of how a state wanders around in the
(N,C)-plane.

4.4 The Linear stability around the two equilibrium points.

We have found two equilibrium solutions in the positive quadrant of the (N,C)-
plane: (N̄0, C̄0) = (0, α2) and (N̄1, C̄1) =

(
α1(α2− 1

α1−1 ), 1
α1−1

)
. Around these

points, we want to know how the Chemostat responds to a small disturbance,
do we wander away from them or do we fall back into them if we try to move
away. The question we want to answer is: are the solutions stable?

In order to analyse the Chemostat’s behaviour at the stationary points we
will use the stability-conditions described in the Appendix.

With some derivation, we notice:

A =
(

a11 a12

a21 a22

)
=

(
α1

C
1+C − 1 α1N

(1+C)2

− C
1+C − N

(1+C)2
− 1

)

Evaluating this at the trivial equilibrium point (N̄0, C̄0) = (0, α2) we get:

A =
( α1α2

1+α2
− 1 0

− α2
1+α2

−1

)
⇒
{

tr(A) = α1α2
1+α2

− 2
det(A) = − α1α2

1+α2
+ 1

We know (or else we take a quick glance in Appendix A) that we have two
conditions for stability around an equilibrium point: tr(A) < 0 and det(A) > 0.
We will notice that our second condition: − α1α2

1+α2
+ 1 > 0 ⇔ 1 > α1α2

1+α2
is in

9We could just as well investigate the five-cline or π-cline, and get similar information. But
by convention we investigate the null-clines.
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conflict with the earlier condition α2 > 1
α1−1 ⇔ 1 < α1α2

1+α2
. So this steady state

is not stable.
The other equilibrium point, (N̄1, C̄1) =

(
α1(α2 − 1

α1−1 ), 1
α1−1

)
, requires

a more delicate touch, therefore we will, to lighten up the display, rename the
term N̄1

(C̄1+1)2
= σ and remember that σ > 0. Now we get:

A =
(

0 σα1

− 1
α1

−σ − 1

)
⇒
{

tr(A) = −σ − 1 < 0.
det(A) = σ > 0.

The non-trivial equilibrium point is thus stable. We also note that:
−4 det(A) + tr(A)2 = −4σ + σ2 + 2σ + 1 = σ2 − 2σ + 1 = (σ − 1)2 > 0. So
that solutions near this point are not acting like spirals, but tend to go more
straight-forward towards (N̄1, C̄1), since we have eigenvalues that are real.

4.5 The invariant line.

In this subsection we will investigate the line: N = −α1C + α1α2, and discover
that this line intersects both of our equilibrium solutions, that no condition,
initially on it can get away from it, and that all solutions tends to approach it.

All solutions end up on the invariant line.

(6) :
{ dN

dt = α1( C
1+C )N −N (a)

dC
dt = −( C

1+C )N − C + α2 (b)

We perform (a) + α1(b) and get the ODE: d
dt (N + α1C)(t) = α1α2 − (N +

α1C)(t). We can look at this relation as an ODE with one function (N+α1C)(t).
One solution is: (N+α1C)(t) = Ke−t+α1α2. One nice property of (N+α1C)(t)
is that (N + α1C)(t) t→∞−→ α1α2.

Thus when t → ∞ we have N − α1C = α1α2 ⇔ N = −α1C + α1α2, all
solutions wandering in the (N,C)-plane will eventually end up on this line.

We also notice that putting N = 0 will give C = α2, the trivial equilibrium
point. and C = 0 give us N = α1α2. You can also easily verify that this line
passes through the non-trivial equilibrium point as well.

The invariance line is the elongation of one of the eigenvectors.

We remember that

A =
(

0 σα1

− 1
α1

−σ − 1

)
, σ =

N̄1

(C̄1 + 1)2
> 0,

now, assume that a solution has the form:(
N(t)
C(t)

)
= X(t) = veλt

When deriving this and looking at our linearization we get: Aveλt = λveλt, and
when using the classic secular equation to find the eigenvalues and eigenvectors
we get:

(A− Iλ)v = 0 ⇒ 0 = det(A− Iλ) = det

(
−λ α1σ
− 1

α1
−σ − 1− λ

)
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⇒ λ(σ + 1 + λ) + σ = 0 ⇒ λ1 = −1, and λ2 = −σ.

We had expected real, negative eigenvalues, thanks to our earlier analysis. But
now we must find a pair of eigenvectors. We insert our eigenvalues in (A−Iλ)v =
0:

(A− Iλ1)v1 =
(

1 α1σ
− 1

α1
−σ

)(
v11

v12

)
= 0 ⇒ v1 =

(
α1σ
−1

)

(A− Iλ2)v2 =
(

σ α1σ
− 1

α1
−1

)(
v21

v22

)
= 0 ⇒ v2 =

(
α1

−1

)
By elongating the eigenvector v2 in positive and negative directions from

(N̄1, C̄1) we can easily verify that this is the same line as N = −α1C + α1α2.
Thus a state starting on the invariant line can not move away from it.

An observation.

Imagine you are looking at the phaseplane of the chemostat. If you have an
arbitrary initial condition in the positive quadrant and let it move around as
time passes. Now imagine a second solution and let them move simultaneously.
It is possible to show that one of them can not cross the path of another, since
their motion is depending on where they are and not where they came from.

The invariance line: conclusions.

We can now conclude that the invariance line can be seen as a barrier for the
solutions. No solution above it can get below it and vice versa. This gives us an
indication in drawing a phase portrait, and we can see that, indeed, the solutions
near the non-trivial equilibrium solution can not vander around in spirals.

4.6 Optimization of the Chemostat.

Now we will leave the dimensionless form and use a general model. We will
adapt it to fit the Chemostat, and express the steadystates in a different way.10

The model is now: {
dN
dt = µN − F

V N
dC
dt = −αµN − F

V C + F
V C0

Where µ is a general rate-expression. Here we can replace the cumbersome F
V

with D, as in dilution coeficient. Simplifying it to:{
dN
dt = µN −DN
dC
dt = −αµN −DC + DC0

If we ignore the trivial steady state and focus on the nontrivial steadystate
(with dropped indexes: (N̄ , C̄)), we find D = µ if we let dN

dt = 0, simplifying
the relationdC

dt = 0 = −αDN̄ −DC̄ + DC0 ⇔ N̄ = 1
α (C0 − C̄).

Now, we will use Michaelis-Menten kinetics for µ. We let D = µ = Kmax
C̄

KS+C̄

⇔ C̄ = DKS

Kmax−D , and now we can find an expression for N̄ with dimensions:

10We will do so since many of the parameters we changed in finding the dimensionless form
includes the dillution coeffitient D, and we need to compute d

dD
(DN̄)
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N̄ = 1
α (C0 − DKS

Kmax−D ). We are easily convinced that this expression multiplied
with D is how to measure the ammount of productivity, if we assume that pro-
ductivity is growth-associated, or if we are interested in the bacteria in itself (as
in yeast-production, etc.).

So we have Nout = N̄D, we want to maximize this, and find an optimum. Let
us derive: d

dDNout = d
dD ( 1

α (DC0− D2KS

Kmax−D )) = 1
α (C0− 2DKS(Kmax−D)+D2KS

(Kmax−D)2 ) ⇔
C0(Kmax−D)2 = −D2KS +2DKSKmax ⇔ D2(C0 +KS)−2DKmax(C0 +
KS) + C0K

2
max = 0 ⇔ (D − Kmax)2 + K2

max(−1 + C0
C0+KS

) = 0 ⇔

D = Kmax(1±
√

−C0+C0+KS

C0+KS
) = Kmax(1±

√
KS

C0+KS
), but we saw earlier that

D = µ, so there is no way D could be greater than Kmax, leaving us the only
possible solution: Dmax = Kmax(1−

√
KS

C0+KS
) ⇒

Nout,max = 1
α

(
C0 + KS −

√
KS(C0 + KS)

)
.
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5 The “semi-permeable” model.

We will investigate a hypothetical growth-chamber somewhat similar to the
chemostat.11 In this growth-chamber bacteria and the stock-nutrient are kept in
the same chamber with a semi-permeable membrane dividing them. The stock-
nutrient concentration is kept constant. The micro-organisms have mortality
µ.

5.1 Explaining the semi-permeable model.

We are given the equations:{ dN
dt = Kmax( C

Kn+C )N − µN (a)
dC
dt = −αKmax( C

Kn+C )N + D(C0 − C) (b)

Now we want to know what each term means. In (a) we have a positive con-
tribution to N and a negative one. The positive one, we remember from the
chemostat, is the reproduction term. And −µ corresponds to the fraction of N
that dies each time unit.

(b) includes two terms: the first term is consumption of C, α units of concen-
tration are required to produce a unit of N, like in the chemostat, the next term
corresponds to increase of C thanks to diffusion from the undrainable stock. If
there is a big difference in concentration, we will have a larger inflow of C.

5.2 The dimensionless form of the semi-permeable model.

The units of the first line: dim[dN
dt ] = number

time , dim[N ] = number and dim[C] =
mass

volume , imply that dim[Kmax] = dim[µ] = 1
time and that dim[Kn] = mass

volume .
Continuing with the second line we get: dim[dC

dt ] = mass
volume·time implying

that dim[D] = 1
time and dim[α] = mass

volume·number .
We, as before, replace N , t and C with NN̂ , tt̂ and CĈ. After multiplying

with ( N̂
t̂
)
−1

and ( Ĉ
t̂
)
−1

respectively we replace Kn = Ĉ, N̂ = Ĉ
αKmax t̂

, α1 =
t̂Kmax and α2 = C0

Kn
we get:{ dN

dt = α1
NC
1+C − µt̂N

dC
dt = − NC

1+C + Dt̂(α2 − C)

We now wish that Dt̂ = µt̂ = 1 but we must allow D 6= µ so we let µt̂ = 1
and Dt̂ = δ giving us an equation very similar to the chemostat:{ dN

dt = α1( C
1+C )N −N

dC
dt = −( C

1+C )N + δ(α2 − C)
(8)

We have reduced the number of parameters from six (Kmax, Kn, µ, D, α and
C0) to three (α1, α2 and δ) using our three dimensions. Here α1, α2 are the
exact same thing as in the chemostat model. We have one new parameter δ
that needs some explaining: we notice dim[δ] = dim[Dt̂] but we know that
dim[dC

dt ] = dim[D(C0 − C)] = Ĉ
t̂
⇒ dim[D] = 1

t̂
⇒ dim[δ] = 1.

11From [1], page 154, problem 14.
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5.3 Steady-states, and the null-clines.

The null clines from Ṅ = 0 are of course the same as for the chemostat: N = 0,
or C = 1

α1−1 . With N = 0 we find that the trivial equilibrium solution is the
same: (N̄0, C̄0) = (0, α2).

Investigating the null cline from Ċ = 0 we get N = δ (C0−C)(C+1)
C . Giving

positive N’s if C > C0, N = 0 if C = C0 (or if C = −1), and negative N’s if
C < C0.

Now, to find the non-trivial equilibrium solution, we insert C = 1
α1−1 in the

second null-cline: N = δα1(α1 − 1)(α2 − 1
α1−1 )

The equilibrium points and null-clines are thus:{
(N̄0, C̄0) = (0, α2)
(N̄1, C̄1) =

(
δα1(α1 − 1)(α2 − 1

α1−1 ), 1
α1−1

)
{

Ṅ = 0 ⇔ (N = 0) or (C = 1
α1
− 1)

Ċ = 0 ⇔ N = δ (C0−C)(C+1)
C

With this, we can now quite easily draw a phase-portrait.

5.4 A stability-analysis.

We use the tools given to us and find that A =

(
α1

C
1+C − 1 α1

N
(1+C)2

− C
1+C − N

(1+C)2
− δ

)
.

Taking a look at the trivial steady-state, we notice:

A(N̄0, C̄0) =
( α1α2

1+α2
− 1 0

− α2
1+α2

−δ

)
⇒ det(A) = −δ( α1α2

1+α2
− 1)

We notice the same problem as for the chemostats trivial equilibrium point:
det(A) < 0 because 1 < α1α2

1+α2
as we saw earlier.

But if we investigate the non-trivial steady-state with σ = N̄1

(1+C̄1)
2 , we get:

A(N̄ , C̄) =
(

0 α1σ
− 1

α1
−σ − δ

)
⇒
{

tr(A(N̄ , C̄)) = −σ − δ < 0
det(A(N̄ , C̄)) = +σ > 0

The conditions for stability are fulfilled, the non-trivial steady-state is stable.
We remember the condition for real eigenvalues: −4det(A) + tr(A)2 > 0.

Renaming σ = b · δ we get the condition δ > 4b
b+1 for real eigenvalues or δ < 4b

b+1
for complex ones.
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6 Review.

Let us now take a look back and compare our models a bit. We first looked
at the case where dN

dt = k ·N giving us exponential growth: N(t) = N0e
kt. In

introducing the nutrient concentration we got:
{

dN
dt = kCN
dC
dt = −αkCN

giving us the

logistic equation (and a similar case for C): dN
dt = r(1− N

B )N .
To derive the chemostat, we introduced the in and out-flow, we found two

steady states and investigated the linearized stability. In the similar model, the
semi-permeable model, we found almost the same thing. Results of our analysis
are summarized in the table below.

Chemostat Semi-permeable

Ṅ α1( C
1+C )N −N α1( C

1+C )N −N

Ċ −( C
1+C )N − C + α2 −( C

1+C )N + δ(α2 − C)

Parameters. α1 = V
F Kmax, α2 = C0

Kn
α1 = V

F Kmax, α2 = C0
Kn

, δ = Dt̂

Constraints. α1 > 1, α2 > 1
α1−1 α1 > 1, α2 > 1

α1−1 , δ > 0

(N̄0, C̄0) (0, α2) (0, α2)

A0

( α1α2
1+α2

− 1 0
− α2

1+α2
−1

) ( α1α2
1+α2

− 1 0
− α2

1+α2
−δ

)
det(A0) − α1α2

1+α2
+ 1 δ(− α1α2

1+α2
+ 1)

tr(A0) α1α2
1+α2

− 2 α1α2
1+α2

− 1− δ

Stable? No. No.

(N̄1, C̄1)
(
α1(α2 − 1

α1−1 ), 1
α1−1

) (
α1δ(α1 − 1)(α2 − 1

α1−1 ), 1
α1−1

)
A1

(
0 σα1

− 1
α1

−σ − 1

) (
0 σα1

− 1
α1

−σ − δ

)
det(A1) σ σ

tr(A1) −σ − 1 −σ − δ

Stable? Yes. Yes.

The two models are very similar. The difference is in an extra parameter δ for
the semi-permeable case.
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APPENDIX A:
The Linearization, Stability, and Eigenvectors.

Some cumbersome, initially non-trivial, mathematical texts explaining the
linearization, the stability of a linearized system, and the beginning of the
invariant line, are put here to lighten up the main text.

The Linearization.

In general, for a one-variable function we can, by Taylor-expanding it around
x, get F (X + x) = F (X) + F ′(X) · x + O(x2) if x is small in comparison to X
we get: F (X + x) ≈ F (X) + F ′(X) · x. We can call this the linearization of F
if we include only the constant and the linear terms.
For two two-variable functions F (N + n, C + c) and G(N + n, C + c):{

F (N + n, C + c) = F (N,C) + F ′
N (N,C)n + F ′

C(N,C)c + O(n + c2)
G(N + n, C + c) = G(N,C) + G′

N (N,C)n + G′
C(N,C)c + O(n + c2)

If we now let. . .{
dN
dt = F (N + n, C + c), with F (N,C) = 0
dC
dt = G(N + n, C + c), with C(N,C) = 0

. . . we, by looking at the linearization, get. . .{
F (N + n, C + c) ≈ F

′

N (N,C)n + F
′

C(N,C)c = a11n + a12c

G(N + n, C + c) ≈ G
′

N (N,C)n + G
′

C(N,C)c = a21n + a22c

. . . allowing us to use the convenient notation: d
dtX = AX =

(
a11 a12

a21 a22

)
X,

often used when looking at the chemostat or other dynamical systems of
similar mathematical form.

The Stability.

Now, let us use our linearization and look at some conditions needed for the
linearization to be stable: X = Aeλt ⇒ d

dtX = λAeλt = Aveλt. Eliminating
the exponential in the two last terms, and treating it a little rewards us with a
well-known equation: det(A− λI) = 0. Treating this equation a little leads us
some interesting constraints:

λ =
a11 + a22

2
±

√
4(a12a21 − a11a22) + (a11 + a22)

2

2
⇔

λ =
tr(A)

2
±

√
−4det(A) + tr(A)2

2
Now, in order to have stable solutions, we must have λ1,2 < 0, forcing at least
tr(A) < 0 (otherwise, the solution with plus will have a positive real part).
Now, looking at this first solution with plus, we notice the following: λ1 < 0⇔

tr(A)
2

+

√
−4det(A) + tr(A)2

2
< 0⇔ tr(A) < −

√
−4det(A) + tr(A)2
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Now, when squaring the two sides, we multiply with something negative on
both sides, changing the relation:

tr(A)2 > −4det(A) + tr(A)2 ⇔ 0 < det(A)

Thus, for us to not have a positive real part in our exponentials (giving us
stable solutions), we have to have: tr(A) < 0 and det(A) > 0. Allowing us to
simply look at our linearization to know a lot of our how our system behaves
near an equilibrium point.

Worth noting is also if
√
−4det(A) + tr(A)2 is real or complex. If a λ has a

negative real part and no complex part in an equilibrium-point, this point
could be considered to be a stable node because the exponentials include only
negative real numbers.
If λ contains some complex parts we can easily discover that the pair of λ’s
must be complex-conjugated and that the exponentials give rise of a spiral-like
motion in the (N,C)-plane around the equilibrium-point. We call the point a
stable spiral if tr(A) < 0.

The Eigenvectors.

Let us return to the relation: λAeλt = vAeλt, and let us assume it gives us
with the eigenvectors v1 and v2, so that we have the solution:
X = C1 · v1eλ1t + C2 · v2eλ2t where C1 and C2 are constants. If we have the
initial condition X0 = v1 ·K, it is clear that C1 = K and C2 = 0.
The conclusions we can draw is that if we are close to an equilibrium-point, on
the positive or negative elongation of an eigenvector, we can not leave this line
(for a linearized system). This will be most useful when discussing the
invariant line of the Chemostat.
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APPENDIX B:
A Matlab chemostat.m file.

function chemostat(alfa1, alfa2, np0, cp0)
%
%CHEMOSTAT Displays a phaseportrait, null clines and an Euler-path
% of a Chemostat.
% CHEMOSTAT(alfa1, alfa2, np0, cp0) will run if
% alfa1 > 1 , thus there is a reproduction.
% alfa2 > 1/(alfa1 -1) , thus there is sufficient stock-nutrition.
% np0 > 0 , you can not have a nonpositive population.
% cp0 > 0 , you can not have a nonpositive concentration.
%
% The blue arrows represent the vectorfield.
% The black lines are two of the three nullclines.
% The black dotted line is the invariance-line (no solution crosses it).
% The red line is a standard Eulerpath, starting in *, with
% equidistant (in time) +’s .
%
% Try the following:
% chemostat( 2, 4, .1, .1) Meaning: initially an "empty" reactor.
% chemostat(1.5, 7, .1, 7) Meaning: initially stock concentration
% and "no" bacteria.
% chemostat(1.1, 20, .1, 20) Meaning: strong flushing, initially
% stock concentration and "no" bacteria.
% chemostat(20, .06, .01, .01) Meaning: low flushing, initially
% "empty" reactor.
%
% by Per Erik Strandberg, 2003, TATM91, LiTH.

% Start-condition:
if ((alfa1>1) & (alfa2> 1/(alfa1 -1)) & (cp0>0) & (np0>0)),

hold off

% The non-trivial equilibrium-solution:
nbar=alfa1*(alfa2-(1/(alfa1-1)));
cbar=(1/(alfa1-1));
plot(nbar,cbar,’o’)
hold on

% The vector-field:
[nn,cc]=meshgrid(0.01*nbar : (2.99*nbar/15) : 3*nbar , 0.01*cbar :
(2.99*cbar/15) : 3*cbar);
dn= alfa1*nn.*cc./(cc+1)-nn;
dc= -nn.*cc./(cc+1)-cc+alfa2;
quiver(nn,cc,dn,dc, .5)

% The c-null cline:
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ccc=[cbar/10: 3*cbar/100 :cbar*3];
nnn = (alfa2-ccc) .* (1+ccc) ./ ccc;
plot(nnn,ccc,’k’)

% One of the n-null clines:
n5=[0 3*nbar];
c5=[(1/(alfa1-1)) (1/(alfa1-1))];
plot(n5,c5,’k’)

% The Invariance-line:
c_inv=[cbar/10: 3*cbar/100 :cbar*3];
n_inv=alfa1*alfa2 - alfa1*c_inv;
plot(n_inv,c_inv,’:k’)

% The Euler-path:
np=[1:1:1000];
cp=[1:1:1000];
np(1)=np0;
cp(1)=cp0;
i=1;

while i < 1000,
np(i+1)=np(i)+0.05*(alfa1*np(i)*cp(i)/(cp(i)+1)-np(i));
cp(i+1)=cp(i)+0.05*((-1)*np(i)*cp(i)/(cp(i)+1)-cp(i)+alfa2);
i=i+1;

end
plot(np,cp,’r’)
plot(np(1), cp(1),’r*’)

plot(np( 200), cp( 200), ’r+’)
plot(np( 400), cp( 400), ’r+’)
plot(np( 600), cp( 600), ’r+’)
plot(np( 800), cp( 800), ’r+’)
plot(np(1000), cp(1000), ’r+’)

axis([0 3*nbar 0 3*cbar])

disp(’ ’)
disp(’ CHEMOSTAT.M by Per Erik Strandberg, 2003, TATM91, LiTH. Finished OK.’)
disp(’ ’)

% The illegal indata case:
else

disp(’ ’)
disp(’ CHEMOSTAT.M by Per Erik Strandberg, 2003, TATM91, LiTH.’)
disp(’ Did not Finish OK. (You used illegal indata.)’)
disp(’ For syntax help type: help chemostat .’)
disp(’ ’)

end
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