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Abstract

There are many types of bioreactors used for producing bacteria populations in
commercial, medical and research applications. This report presents a system-
atic discussion of some of the most important models corresponding to the well
known reproduction kinetics such as the Michaelis-Menten kinetics, competitive
substrate inhibition and competitive product inhibition.

We propose a modification of a known model, analyze it in the same manner
as known models and discuss the most popular types of bioreactors and ways
of controlling them. This work summarises much of the known results and may
serve as an aid in attempts to design new models.

Keywords: Chemostat, Continuous Stirred Tank Bioreactors (CSTR), Dy-
namical Systems, Mathematical Models in Biology, Biologic growth and
Biologic production.

Abstract in Swedish: Sammanfattning

Det finns många typer av bioreaktorer som tillämpas kommersiellt, och inom
medicin och forskning. Denna rapport presenterar en systematisk redovisning
av n̊agra av de viktigaste modellerna som motsvarar de kända kinetiska for-
merna Michaelis-Menten kinetik, kompetitiv substratinhibering och kompetitiv
produktinhibiering.

Vi föresl̊ar en modifiering av en känd modell, analyserar den p̊a samma sätt
som kända modeller och redogör för de populäraste bioreaktortyperna och hur
de kan kontrolleras. Detta verk sammanfattar mycket av idag kända resultat
och kan användas som hjälp i design av nya modeller.

Strandberg, 2004. vii
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Nomenclature

Most of the reoccurring abbreviations and symbols are described here.

Symbols

Y0 The amount of the variable Y inserted into a system.

Ŷ The unit-dimension of the variable Y , for example t̂ = 1s .
Ȳi A steady state (number i) value of Y.

Ki Constants used in kinetic expressions, for example KI .

A The system matrix.
a, b Growth- and non growth-associated production yield coefficients.
c, ϕ, δ Fraction of X , F or S0. 0 < c < 1, 0 < ϕ < 1, 0 < δ < 1 .
C, R The set of complex and real numbers.
D Dilution coefficient; fraction of V replaced per timeunit.
E Enzyme concentration in a system.
F The flow of a media in or out of a system.
P Product concentration in a system.
S Substrate concentration in a system.
V The volume of a system.
X Biomass concentration in a system (kilogram/litre, etc.)
X Vector containing S, X and P .

α1 Dimensionless maximal reproduction rate.
α2 Dimensionless nutrition feed concentration.
α, β Unitconsumtion of S needed to produce one unit of X or P .
µ The general rate expression. µ = µ(S, X , P , . . . )

Abbreviations

CPI Competitive Product Inhibition (or Inhibited)
CSI Competitive Substrate Inhibition (or Inhibited)
CSTR Continuous Stirred Tank (bio)Reactor
MMI Michaelis-Menten Inhibition (or Inhibited)
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Chapter 1

Introduction

This text is written as a master of science final thesis1 at the University of Linköping
by Per Erik Strandberg with Stefan Rauch as supervisor and examiner, with Emacs
in LATEX in 2003/2004.

This first chapter will define what is a Continuous stirred tank bioreactor and a
chemostat. We give some background and formulate some main questions we wish
to answer, and describe what topics are covered.

1.1 Background

Modeling of biological growth in reactors by dynamical systems started in the
1950’s, when Monod, and Novick and Szilard developed the concept of Contin-
uous Stirred Tank (bio)Reactors(CSTRs) that differed from traditional batchre-
actors.

In a CSTR kinetics of the cellgrowth is sometimes referred to as a blackbox
model , since all of the intra- and extra-cellular reactions are lumped into one
overall reaction. Typical equations describing blackbox models are very similar
to enzymatic kinetics (where there is often one substrate and one product in
one reaction), such as the Michaelis-Menten kinetics used in the ideal CSTR
(the chemostat), often referred to as Monods model.

?

-X , S, µ

F , X , S

S0, F

Figure 1.1: The ideal CSTR: the chemostat, its inflow of nutrition, its growth
(µ), and its outflow.

1Swedish: Filosofie magister examensarbete.

Strandberg, 2004. 1



2 Chapter 1. Introduction

A chemostat is typically made of a reactor, containing a bacteria-population,
of density X(t), and a substrate of density S(t) feeding the bacteria. The reactor
is supplied with stocknutrient of concentration S0 from some kind of nutrient
reservoir with the flow F that is constant over time. To maintain a constant
volume the inflow equals the outflow in which bacteria and/or products are
harvested.

1.2 Problems we want to solve

This report provides a summary of already existing knowledge of bioreactors
and a detailed analysis of differential equations modelling bioreactors that one
usually encounters in textbooks. Some modifications of existing models are
proposed and studied in detail.

This text aims to answer questions like “What types of bioreactors are
there?”, “If my bacteria population reproduces according to one of the kinetic
forms, how will it behave?”, “If my model is not really correct, how could I
change it?”, “What do I need to consider before fixing my model?”, and some
more.

1.3 Topics covered

There are five chapters (and this introduction) and two appendixes. Main topics
dealt with are:

Chapter 2: We explain the chemostat equations with the standard Michaelis-
Menten kinetics by starting with two simple models of biological growth.
We also present some tools useful for studying dynamical systems in two
dimensions.

Chapter 3: A new kinetic form is proposed and applied to an ideal CSTR.

Chapter 4: We leave the ideal CSTR and introduce, motivate and examine
some modified CSTRs.

Chapter 5: We look at controlled CSTRs.

Chapter 6: Summary and conclusion.

Appendix A: An appendix dealing with tools used to simplify the analysis of
linearized stability in steady states.

Appendix B: A Matlab M-file is appended, showing how a program like Mat-
lab can be used to visualize and experiment with a given mathematical
model.



Chapter 2

The ideal CSTR: the

chemostat

In this chapter we study exponential growth, the logistic equation and the batchre-
actors. We introduce the terminology, and explain how to think and how to look
at models and their describing differential equations.

We will derive and carefully analyze the chemostat equations. These equations
will constitute a reference model for the remaining parts of this text.

2.1 Some simple models of biological growth

2.1.1 Exponential growth

An extremely simple model could be dX
dt = µ ·X where µ is the birth coefficient

and X stands for bacteria density. If µ = constant > 0, we get X(t) = X0e
µt.

This is too simple a model. To limit the production of organisms we in-
troduce a variable S describing concentration of the nutrient into the dynamic
equations.

2.1.2 The logistic equation

Let us assume that dX
dt = µ ·X, with µ = µ(S) = k ·S, and that dS

dt = −αkSX ,
meaning that each unit of bacteria density produces kS units of offspring per
time unit. With α = constant > 0 we could mean that each produced unit of
offspring requires α units of nutrition. This model corresponds to our intuition:
the term SX says how often bacteria and food meet, giving the bacteria an
opportunity to consume nutrient particles from the inflow S0 and to reproduce.

We get a system of ordinary differential equations:

{
dX
dt = kSX (a)

dS
dt = −αkSX (b)

Multiplying (a) by α and adding (b) we get: d
dt (S + αX) = 0, thus (S +

αX)(t) = S0 + αX0 = constant. In particular with t = 0 and X(0) = X0 ≈ 0
(or at least small in comparison to a normal X(t)) we have S(0)+ αX(0) ≈ S0,

Strandberg, 2004. 3



4 Chapter 2. The ideal CSTR: the chemostat

since X0 small implies S(t) = S0 − αX(t), giving us a reason to eliminate (b),
and rewrite (a) as:

dX

dt
= k(S0 − αX

︸ ︷︷ ︸

≈S(t)

)X = kS0
︸︷︷︸

r>0

(1 −
X

S0/α
︸ ︷︷ ︸

B>0

)X = r(1 −
X

B
)X

By changing some factors we have reduced our system of ordinary differential
equations to a single equation, called the logistic equation:

dX

dt
= r(1 −

X

B
)X (2.1)

The factor r(1− X
B ), that corresponds to our old µ, is called an intrinsic1 growth-

speed, and B the carrying capacity. By eliminating X instead of S, we quickly
find dS

dt = −αr(1 − S
αB )S, an equation describing time change of the nutrient

concentration.
When analyzing (2.1) we discover that for small values of X , when 0 < X ≪ B

we can approximate (2.1) by an exponential term and our model gives exponen-
tial growth for very small initial population densities.

The factor −XX
B in the equation corresponds to a crowding effect, inhibiting

the reproduction rate.
The sign of (1− X

B ) is important to analyze. Let us assume that X ≥ 0. We

also know that r > 0. Meaning that (1− X
B ) is what determines the sign of dX

dt .

X = 0 ⇒ dX
dt = 0, a trivial solution, there is no population;

0 < X < B ⇒ (1 − X
B ) > 0, the population grows;

X = B ⇒ dX
dt = 0, constant population; and

X > B ⇒ dX
dt < 0, decreasing population.

We now know that the model corresponds to our intuition. A small popula-
tion initially grows exponentially, later the term (1 − X

B ) starts to play role. If
ever X = B we will get a constant population. Finally: if X > B, N will even-
tually diminish towards X = B. X = 0 and X = B are equilibrium solutions,
or steady states.

An explicit solution to (2.1) is: X(t) = X0B
X0+(B−X0)e−rt , if 0 < X0 < B. It

can be found by separating variables in equation (2.1)

2.1.3 A general batch reactor

Before we introduce the chemostat let us make a comment on a more general
case that is similar to logistic growth: the batch reactor.

Into a vessel (reactor) we insert a nutrition solution with concentration S0

and a small population of bacteria X0 and close the lid. Assume we have some
kind of kinetic expression µ. We then get the equations:

{
dX
dt = µX (a)

dS
dt = −αµX (b)

(2.2)

Again, as with the logistic growth we sum up α(a) + (b) and, for the same
reasons as above, find: S = S0 + α(X0 −X). If we can assume X0 ≪ X we get

1Swedish: “inre” or “inneboende”



2.2. The chemostat 5

the nice, and general expression: S = S0 − αX . Again we can eliminate S and,
if µ = µ(X), end up with:

dX

dt
= µ(X) · X (2.3)

We can now insert various kinetics instead of µ and investigate what happens.

2.2 The chemostat

A chemostat is made of two main parts; a nutrient reservoir, and a growth-
chamber, reactor, in which the bacteria reproduces. Via an inflow from the
reservoir fresh nutrition is added and from an outflow bacteria are harvested.

The purpose of the chemostat is to have a quasi-constant X and S, allowing
us to harvest at a constant rate. The name chemostat stands for “the chemical
environment is stat ic”.

We must adjust our earlier models by introducing an inflow and in doing so,
we will also define units used in our growth-chamber.

We will also reduce the number of parameters of the chemostat by reducing
it to the dimensionless form.

2.2.1 The Continuous flow

We let F = Fin = Fout having dimensions of volume/time. With Fin comes S0:
“mass”/volume2. In the reactor we have a population of bacteria of density X :
mass/volume, and S: mass/volume.

We modify equation (2.1) by adding terms describing the inflow of the
nutrition-solution and the outflow of bacteria, and assume µ = µ(S). Thus:







dX
dt = µ(S)X

new
︷ ︸︸ ︷

−X
F

V
dS
dt = −αµ(S)X −S

F

V
+ S0

F

V
︸ ︷︷ ︸

new

(2.4)

As we can see, F appears together with V in the form of F/V , so we set
F/V = D - a dilution coefficient. It describes the fraction of volume being
replaced in a unit of time.

The term X/V describes the density of bacteria, and by multiplying it with
F we get the amount of bacteria being flushed away in a unit of time. Similarly
−DS corresponds to the outflow of the nutrient, and +DS0 to the inflow of the
nutrient.

2.2.2 The Michaelis-Menten-kinetics

We will now discuss the reproduction coefficient, µ(S), by relating it to the
Michaelis-Menten kinetics. This is the main “black box” we will see, and it is
often also referred to as Monods kinetics.

Experimental data and similar cases in enzyme kinetics motivate the need
of the reproduction-constant to be almost linear for small positive values for S,

2“Mass” could be moles, kilograms, molecules, etc.



6 Chapter 2. The ideal CSTR: the chemostat

but we also require an upper limit for µ so that: µ(S)
S→∞
−→ µmax. We write

down the Michaelis-Menten-kinetics:

µ(S) =
µmaxS

KN + S

The new constant KN has an interesting meaning: KN

KN +KN
= 1

2µmax. So

KN corresponds to the concentration at which µ = 1
2µmax

Let us see how µ(S) depends on S:
Small S’s give us µ(S) ≈ S µmax

KN
, if we can assume S ≪ KN , thus µ(S) is

almost linear. The maximum µ, µmax, is never reached, no matter how great S
gets, we have µ(S) < µmax.

The limit µ(S)
S→∞
−→ µmax is what we wanted. So µmax is the maximal

reproduction rate, achieved when the nutrient is unlimited.
With this µ(S), the model becomes:

{
dX
dt = µmax

S
KN+S X − DX

dS
dt = −αµmax

S
KN+S X − DS + DS0

(2.5)

A more general CSTR, where Ω stands for other possible variables (X, (bi-)
products, pH, . . . ) that may influence the reproduction rate, and X0 stands for
bacteria density inserted via the in-flow, could be described by:

{
dX
dt = µ(S, Ω)X − DX + DX0

dS
dt = −αµ(S, Ω)X − DS + DS0

(2.6)

It is important to understand the structure of (2.6). We will look at others
CSTR’s, where this form is the common origin.

2.2.3 The dimensionless form of the chemostat

A quick glance at our equations show that we have a number of variable param-
eters: µmax, KN , D, α, and S0. Each one of them is important and necessary,
but is there a way for us to reduce the number of parameters somehow? The
answer is yes, and we will see that it is possible to eliminate three of our con-
stants (we eliminate five of them and introduce two new ones, this is possible
since we have five parameters, and three dimensions).

As the title of this subsection suggests, we will actually eliminate the di-
mensions/units of the equations, but first we must investigate the units of our
constants. The first relation:

dim[dX
dt ] = number

volume·time (here we assume dim[X ] = number/volume and

dim[t] = time), thus: dim[µmaxXS
KN+S ] = number

volume·time . With dim[S] = mass
volume we

get dim[KN ] = mass
volume in order to keep KN + S meaningful, only allowing

dim[µmax] = 1
time .

Our second relation: dim[dS
dt ] = mass

volume·time , and since we know that dim[S] =
mass

volume , we get dim[S0] = mass
volume . So for α we get dim[α] = mass/volume

number/volume = 1.

And now, to simplify, we replace S, X , and t with S · Ŝ, X · X̂, and t · t̂.
Where Ŝ, X̂ and t̂ corresponds to the unit-dimension, whatever they may be.3

3Note that t̂ could be a second, a year, 3.25489677 minutes, etc, X̂ could be one bacteria,
twelve bacterias or 2.553 kg of dry cellweight per litre, gallon or tankvolume, and Ŝ could
typically be: mol/l, molecules/mm3 or 3.333 lb/gallon.



2.3. Analyzing the chemostat equations 7

Our elegant equation (2.5) will now for a moment be replaced with:







dX
dt · X̂

t̂
= µmax

SŜ
KN+SŜ

XX̂ − DXX̂

dS
dt · Ŝ

t̂
= −αµmax

SŜ
KN+SŜ

XX̂ − DSŜ + DS0

Now, to get a dimensionless form, we multiply the dX-row with t̂/X̂, and

the dS-row with t̂/Ŝ, allowing us to fix t̂ = 1
D , Ŝ = KN , X̂ = Ŝ

αµmax t̂
= KN D

αµmax
,

and replace α1 = t̂µmax = 1
Dµmax and α2 = S0

Ŝ
= S0

KN
= t̂DS0

Ŝ
. These replacings

give:

{
dX
dt = α1

S
1+S X − X

dS
dt = − S

1+S X − S + α2

(2.7)

Showing that the chemostat effectively depends on two parameters α1 and α2.

2.3 Analyzing the chemostat equations

For the chemostat equations we find equilibrium solutions, null-clines, investi-
gate interesting values of the parameters α1 and α2, linearize equations (2.7)
around equilibrium points and find an invariant line.

2.3.1 Equilibrium solutions of the chemostat

To find equilibrium solutions we solve:

{
dX
dt = α1(

S
1+S )X − X = 0

dS
dt = −( S

1+S )X − S + α2 = 0
⇒

{
0 = α1(

S
1+S )X − X

0 = −( S
1+S )X − S + α2

One trivial solution is X = 0. Inserting this into the second relation gives
us S = α2 thus one equilibrium solution is: (X̄0, S̄0) = (0, α2). This is our
first hint indicating that α2 has a meaning of a dimensionless stock-nutrient-
concentration.

The other (non-trivial) solution is more interesting. We get: X = α1(
S

1+S )X

and for X 6= 0, S = 1
α1−1 .

Combining this with the second equation, we get: X = α1(α2 − 1
α1−1 ). So

we have two equilibrium points:

(X̄0, S̄0) = (0, α2)

(X̄1, S̄1) =
(

α1(α2 −
1

α1−1 ), 1
α1−1

)
(2.8)

2.3.2 Parameters α1 and α2

Let us discuss when α1 and α2 give us an equilibrium having biological meaning.
We saw that α1 = µmax

D . Giving us the hint that α1 could be interpreted
as a kind of dimensionless reproduction-rate, or even more interestingly: as a
maximum reproduction-rate multiplied by the inverse of the flushing factor.

Combining our intuition with the solutions we found above, we notice: S̄1 =
1

α1−1 , this must be positive for the population to exist, giving us: α1 > 1.
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Meaning that we must limit the dilution rate to be smaller than the maximal
reproduction rate.

From the trivial solution we notice that S̄0 = α2 = S0

KN
characterises nu-

trient. But as we will see, this is one way of dealing with α2. Another way of
looking at this parameter is to interpret it as an inverse number of KN , or as
the amount of S we have, measured in units of KN . We saw that a small KN

means that we are closer to µmax for lower values of S. So small KN means
that α2 is large and vice versa.

Looking at our non-trivial solution again we notice that X̄1 = α2−
1

α1−1 must

be positive for the population to exist. Requiring α2 > 1
α1−1 . (Thus α2 > 0.)

Here we can see that for small (α1−1) (large flushing or weak reproduction) we
need α2 to be large (strong flushing or weak reproduction, requires more food
in order to reproduce faster), and a large α1 allows α2 to be small. This is how
the model tells us that if it easy to reproduce we have a lower need of nutrition.

2.3.3 Nullclines of the chemostat

A useful tool for investigating this kind of dynamic systems are nullclines, the
lines where dX

dt = 0, or dS
dt = 0. We also understand that at the crossing of two

different kind of nullclines there is an equilibrium point.

Let us begin with the X-relation: 0 = dX
dt = α1(

S
1+S )X − X, we notice that

one nullcline is: X = 0, and the other ones is: α1(
S

1+S ) − 1 = 0 so S = 1
α1−1 .

Continuing with the nullclines for S: 0 = dS
dt = −( S

1+S )X −S +α2 = 0, after

some elementary work, we get: X = (α2−S)(1+S)
S . Our nullclines are given by:

{

Ẋ = 0 ⇒ X = 0 or S = 1
α1−1

Ṡ = 0 ⇒ X = (α2−S)(1+S)
S

The nullclines are easy to draw, and by drawing some vectors in the first
quadrant, we can get a pretty good idea of how a state (X(t), S(t)) moves around
in the (X,S)-plane over time.

2.3.4 Linearization around the equilibrium points

We have found two equilibrium solutions in the positive quadrant of the (X,S)-

plane: (X̄0, S̄0) = (0, α2) and (X̄1, S̄1) =
(

α1(α2 − 1
α1−1 ), 1

α1−1

)

. We want to

study in the neighbourhood of these points how the chemostat responds to small
disturbances. Does it wander away from an equilibrium or does it fall back onto
it? The question we want to answer is: is the solution stable?

In order to analyze the chemostat’s behaviour at the equilibrium we will use
the stability conditions described in Appendix A. The stability conditions are
tr(A) < 0 and det(A) > 0. For eigenvalues of the linearization matrix A to be
real we need −4 det(A) + tr(A)2 > 0.

We find (see Appendix A):

A =

(
a11 a12

a21 a22

)

=

(

α1
S

1+S − 1 α1X
(1+S)2

− S
1+S − X

(1+S)2
− 1

)
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Evaluating this at the trivial equilibrium point (X̄0, S̄0) = (0, α2) we get:

A =

( α1α2

1+α2
− 1 0

− α2

1+α2
−1

)

⇒

{
tr(A) = α1α2

1+α2
− 2

det(A) = − α1α2

1+α2
+ 1

We know that we have two conditions for stability around an equilibrium
point: tr(A) < 0 and det(A) > 0. We will notice that our second condition:
− α1α2

1+α2
+ 1 > 0 ⇔ 1 > α1α2

1+α2
is in conflict with the earlier condition for

physical meaning, α2 > 1
α1−1 ⇔ 1 < α1α2

1+α2
. So this steady state is not

stable.
At the other equilibrium point, (X̄1, S̄1) =

(

α1(α2 − 1
α1−1 ), 1

α1−1

)

, by re-

naming the term X̄1

(S̄1+1)2
= σ and remember that σ > 0, we get:

A =

(
0 σα1

− 1
α1

−σ − 1

)

⇒

{
tr(A) = −σ − 1 < 0.
det(A) = σ > 0.

The non-trivial equilibrium point is thus stable. We also note that:
−4 det(A) + tr(A)

2
= −4σ + σ2 + 2σ + 1 = σ2 − 2σ + 1 = (σ − 1)

2
> 0. So

trajectories of a state near this point are not spiraling since their eigenvectors
are real. They go more straight-forward towards (X̄1, S̄1).

2.3.5 The invariant line

In this subsection we study the line X = −α1S + α1α2.

All solutions asymptotically approaches the invariant line

From (2.7):

{
dX
dt = α1(

S
1+S )X − X (a)

dS
dt = −( S

1+S )X − S + α2 (b)
we perform (a)+α1(b) and get:

d
dt (X + α1S)(t) = α1α2 − (X + α1S)(t). We can look at this relation as an
ordinary differential equation with one function (X + α1S)(t). One solution
is: (X + α1S)(t) = Ke−t + α1α2. One nice property of (X + α1S)(t) is that

(X + α1S)(t)
t→∞
−→ α1α2.

Thus when t → ∞ we have X − α1S = α1α2 ⇔ X = −α1S + α1α2, all
solutions wandering in the positive quadrant of the (X,S)-plane asymptotically
approaches this line.

We also notice that putting X = 0 will give S = α2, the trivial equilibrium
point, and S = 0 give us X = α1α2. You can also easily verify that this line
passes through the non-trivial equilibrium point as well.

The invariant line has the direction of one of the eigenvectors

We remember that A =

(
0 σα1

− 1
α1

−σ − 1

)

, σ = X̄1

(S̄1+1)2
> 0, now assume

that a solution has the form:

(
X(t)
S(t)

)

= X(t) = veλt. When differentiating

this and looking at our linearization we get: Aveλt = λveλt, and when using
the classic secular equation to find the eigenvalues and eigenvectors we get:

(A − Iλ)v = 0 ⇒ 0 = det(A − Iλ) = det

(
−λ α1σ
− 1

α1
−σ − 1 − λ

)
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⇒ λ(σ + 1 + λ) + σ = 0 ⇒ λ1 = −1, and λ2 = −σ.

Since we saw −4 det(A)+ tr(A)
2

> 0 we had expected real eigenvalues and the
stability conditions are fulfilled, so we had expected them to be negative. Now
we must find the eigenvectors. We insert our eigenvalues in (A − Iλ)v = 0:

(A − Iλ1)v1 =

(
1 α1σ

− 1
α1

−σ

)(
v11

v12

)

= 0 ⇒ v1 =

(
α1σ
−1

)

(A − Iλ2)v2 =

(
σ α1σ

− 1
α1

−1

)(
v21

v22

)

= 0 ⇒ v2 =

(
α1

−1

)

By elongating the eigenvector v2 in positive and negative directions from
(X̄1, S̄1) we can easily verify that this is the same line as X = −α1S + α1α2.
Thus a state starting on the invariant line can not move away from it.

An observation

By the theorem of existence and uniqueness of solutions of ordinary differential
equations two trajectories cannot cross each other. Thus the invariant line
(consisting of trajectories) cannot be crossed. This helps in understanding how
trajectories behave in the neighbourhood of the invariant line (see figure 2.1).

The invariant line: conclusions

We can now conclude that the invariance line can be seen as a barrier for the
solutions. No solution above it can get below it and vice versa. This gives us a
guidance in drawing a phase portrait, and we can see in the Matlab simulation
that, indeed, the solutions near the non-trivial equilibrium solution can not
move around in spirals.

2.3.6 Looking at the phaseportrait

When looking at the phaseportrait we will plot trajectories using Eulers method:
Xn+1 = Xn + ∆t · d

dtXn. We can call this kind of trajectory an Euler path.

The phaseportrait of this kind of a system gives us a lot of information. In
this example we can see the invariant line (dotted), the nullclines, and an Euler
path (point-dotted) starting at a low amounts of both bacteria and nutrition
rates. In this example we understand that the state at first wanders towards
higher amounts of nutrition (the bacteria are slowly reproducing). When there
is sufficient amounts of nutrition the state wanders off towards more bacteria
slowing the increase of nutrition, bending it off to the right then getting almost
parallel to the invariant line, and finally asymptotically reaching the steady
state.

In figure 2.1 (and the following figures in later sections) we can see α2 where
the invariant line crosses the S-axis (in the trivial steady state there are no
bacteria and stock-concentration of nutrient). We can also find α1α2 at the
invariant lines crossing of the X-axis. From this information we can find the
dimensionless units of X and S if we would like.



2.3. Analyzing the chemostat equations 11

0 1 2 3 4 5 6 7 8 9
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

X 

S 

Figure 2.1: A phaseportrait of a chemostat. The dotted line is the invariant
line, the point-dotted line an Euler path and the Continuous lines are nullclines
(the S-axis is an X-nullcline). The arrows represent the vector-field (dX

dt , dS
dt ).

Notice that the Euler path approaches the invariant line but never crosses it.

2.3.7 Optimisation of the chemostat

Now we will leave the dimensionless form and return to the general model,
(2.6). We will adapt it to fit the chemostat, and express the steady states in
a different way. We will do so since many of the parameters we changed in
finding the dimensionless form includes the dilution coefficient D, and we need
to compute d

dD (DX̄) in order to find an optimal value for D. The model is now:

{
dX
dt = µX − DX
dS
dt = −αµX − DS + DS0

If we focus on the nontrivial steady state (ignoring the indexes): (X̄, S̄), we
find D = µ if we let dX

dt = 0, simplifying the relationdS
dt = 0 = −αDX̄ − DS̄ +

DS0 ⇔ X̄ = 1
α (S0 − S̄).

For Monods kinetic expression, we let D = µ = µmax
S̄

KS+S̄
⇔ S̄ =

DKS

µmax−D , and now we can find an expression for X̄: X̄ = 1
α (S0 −

DKS

µmax−D ). We
are easily convinced that this expression multiplied with D is one way to measure
the amount of productivity, if we assume that productivity is growth-associated,
or if we are interested in the bacteria in itself (as in the yeast-production).

Now we have Xout = X̄D and we want to maximize this, and find an op-

timum. We calculate d
dD (X̄D) and find D = µmax(1 ±

√
KS

S0+KS
), but (as we

saw earlier) D = µ, so there is no way D could be greater than µmax, leaving

us with the only possible solution: Dmax = µmax(1 −
√

KS

S0+KS
) ⇒

Xout,max = 1
α

(

S0 + KS −
√

KS(S0 + KS)
)

.
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2.3.8 Something about the products

So far, we have only considered a system where biomass and substrate concen-
tration were described. Biomass, as for yeast production is usually the variable
of interest. Sometimes, as for waste treatment, the substrate is what is inter-
esting. But there is also the possibility that another variable P , the product, is
what we want to know more about.

A common way to describe the change in product density is to assume that
there are both growth- and non-growth-associated production. The growth-
associated production is proportional to the ammount of growth by the constant
a, and the non-growth-associated production to the bacteria density by the
constant b. We get the us the system:







dX
dt = µX − DX

dS
dt = D(S0 − S) − αµX − β(aµX + bX)

dP
dt = aµX + bX − DP

(2.9)

We recognize α as the unit-consumption of S required to produce one unit of X ,
and β as the unit-consumption of S required to produce one unit of P The “new”
constants a and b describe the difference between growth-associated production
and non-growth-associated production respectively.

Looking for a nontrivial steady state we let dX
dt = 0 and find µ = D, from

this we can usually find S̄ if we have X̄, and P̄ . P̄ is found by taking µ = D and
dP
dt = 0 ⇒ P̄ = aX̄+ bX̄

D . Finding X̄ requires a little work, and we calculate:
dS
dt = 0 ⇔ X̄(αD + βaD + βb) = D(S0 − S̄) ⇔ X̄ = S0−S̄

α+β(a+ b
D

)
, so the

(non-trivial) steady state for a general µ is:







X̄ = S0−S̄
α+β(a+ b

D
)

P̄ = aX̄ + bX̄
D

µ = D ⇒ S̄

If we are interested in S̄ we can often easily find it from the above relations.
If we use the only kinetics we have encountered so far, the Monod kinetics, we
again find: S̄ = DKS

µmax−D and get:







S̄ = DKS

µmax−D

X̄ = S0−S̄
α+β(a+ b

D
)

P̄ = aX̄ + bX̄
D

As in Optimising Xout the Optimisation of P requires computing d(DP̄)
dt = 0.



Chapter 3

A Chemostat with modified

kinetics

We have considered so far a chemostat with Monods kinetics. In this chapter we
will investigate our modification of this model.

Similarities with Monods equations will aid us in performing an analysis of the
equations in a similar way as in Chapter 2.

3.1 The MMI-CSTR

We call this model the Michaelis-Menten inhibited Continuous stirred tank re-
actor (MMI-CSTR) since we use a kind of Michaelis-Menten kinetics to lower
the influence of growing values of X in the kinetic expression. We take the term
µ = µmax

S
KS+S

X
KX+X in our equations instead of µmax

S
KS+S X , as in Monods

chemostat. This kinetic form describes the situation when a high density, X , of
bacteria inhibits the growth in the chemostat.

By introducing the proposed inhibition we get the MMI-CSTR:

{
dX
dt = µmax

S
KS+S

X
KX+X − XD

dS
dt = −αµmax

S
KS+S

X
KX+X − SD + S0D

(3.1)

To obtain a nondimensional form we replace S, X and t with S · Ŝ, X · X̂
and t · t̂. We start by multiplying the relations with t̂/X̂ and t̂/Ŝ respectively

then replace t̂ = 1
D , Ŝ = KS, X̂ = Ŝ

α µmax
KX

t̂
, and replace α1 = µmax

KXD and α2 = S0

Ŝ
.

Finally, we let KX = XCX̂, to write the equations as:







dX
dt = α1

S
1+S

X
1+ X

XC

− X

dS
dt = − S

1+S
X

1+ X
XC

− S + α2

(3.2)

3.2 Invariant Line

As previously, we can find that X = α1(α2 − S) in an invariant line.

Strandberg, 2004. 13
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3.3 Nullclines

We let dX
dt = 0 and find the line X = 0, but also S =

1+ X
XC

α1−(1+ X
XC

)
. Now, if

dS
dt = 0 we get: X = (α2−S)(1+S)

S+ 1
XC

(α2−S)(1+S)
. So the nullclines are:







dX
dt = 0 ⇒ X = 0 or S =

1+ X
XC

α1−(1+ X
XC

)

dS
dt = 0 ⇒ X = (α2−S)(1+S)

S+ 1
XC

(α2−S)(1+S)

3.4 Steady states

Using the first of the dX
dt = 0 nullclines we find the same trivial steady state:

(X̄0, S̄0) = (0, α2). If we use the second relation in combination with the invari-
ant line to eliminate X we end up with the second degree equation:

S2 + S (XC + 1 −
XC

α1
− α2)

︸ ︷︷ ︸

p−q

+ (−
XC

α1
− α2)

︸ ︷︷ ︸

−q

= 0, with the solutions

S = q−p
2 ±

√

( q−p
2 )2 + q. One can quickly find that the solution with a minus

is negative, so we reject it. The other solution however must be smaller than α2

in order for the X associated to it to be positive, so the following assumptions

are needed: α2 > − p−q
2 +

√

(p−q
2 )2 + q ⇔ α2 > 1

α1−1 , for any non-trivial

steady state to exist. We also understand that α1 > 1. These conditions will
be used later.

3.5 Linearization around the equilibrium points

For the MMI-CSTR the system matrix A is:

A =





α1
S

1+S
1

(1+ X
XC

)2
− 1 α1

1
(1+S)2

X
1+ X

XC

− S
1+S

1
(1+ X

XC
)2

− 1
(1+S)2

X
1+ X

XC

− 1



 .

When we investigate the trace and the determinant at the steady states we
may use the relation: dX

dt = 0 ⇔ α1XS = X(1 + S)(1 + X
XC

), to simplify
the matrix A (for X 6= 0):

A =





1
1+ X

XC

− 1 X
S(1+S)

−
1/α1

1+ X
XC

−
X/α1

S(1+S) − 1



 =






− X
XC

1+ X
XC

X
S(1+S)

−
1/α1

1+ X
XC

−
X/α1

S(1+S) − 1




 .

As we can see: trA < 0, but how about det(A), is it positive? We eliminate
some of our X by using the invariant line:

A =






− X
XC

1+ X
XC

α1(α2−S)
S(1+S)

−
1/α1

1+ X
XC

−
(α2−S)
S(1+S) − 1




 ⇒
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det(A) =
X

XC

1 + X
XC

( α2 − S

S(1 + S)
+ 1
)

+
α2 − S

(1 + X
XC

)(1 + S)
> 0

Thus, the nontrivial steady state is stable.
If we now study the trivial steady state, we have X = 0, so A is:

A =

(
α1α2

1+α2
− 1 0

− α2

1+α2
−1

)

⇒

{
tr(A) = α1α2

1+α2
− 2 ⇒ α1α2

1+α2
< 2, for stability.

det(A) = −( α1α2

1+α2
− 1) ⇒ α1α2

1+α2
< 1, for stability.

So, we have to have α1α2

1+α2
< 1 ⇔ α2 > 1

α1−1 to have a stable trivial
steady state, but we remember the constraint for the non-trivial steady state
to exist: α2 < 1

α1−1 , we can conclude that if we flush too much; no population
will exist, like expected.

3.6 Looking at the phaseportrait
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Figure 3.1: Phaseportrait of the MMI-CSTR.

Again, in figure 3.1, we have α1α2 where the invariant line crosses the X-
axis, and α2 where it crosses the S-axis. We see that the nullclines have similar
positions in the phaseplane and that the Euler path has a similar behaviour.
This phase-portrait is very similar to the chemostat one. But we notice that
indeed the MMI-CSTR responds to large values of X by inhibition.

3.7 Optimisation

From the general model (2.6) we quickly get: µ = D and X̄ = 1
α (S0S̄) if

we ignore the trivial steady state and drop the indices. From µ = D we
can find X̄ in order to eliminate it: X̄ = µmax

S
S̄

KS+S̄
− KX = 1

α (S0 − S̄).
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This expression give rise to the same kind of second degree equation as ear-

lier: S̄2 + S̄ (
αµmax

D
+ KS − αKS − S0)

︸ ︷︷ ︸
2w
D

+2λ

+ KS(−αKX − S0)
︸ ︷︷ ︸

−v

= 0. This equation

gives us an S̄ with dimensions. We can use this dimensional S̄ to find DX̄:

DX̄ = S0 + w
α + Dλ

α −

√

(w
α + Dλ

α )2 + D2v
α2 .

This can be differentiated in order to find d
dD (DX̄) = 0.

3.8 From MMI-CSTR to chemostat

A quick comparison of the dimensionless µ’s of the chemostat and the MMI-
CSTR reveals that the new term 1

1+ X
XC

inhibits both dX
dt and dS

dt . This inhibition

is stronger the smaller XC is. Thus in the limit of XC → ∞ we recover:

µMMI = α1
S

S+1
1

1+ X
XC

XC→∞
−→ α1

S
S+1 = µchemostat.

3.9 Summary and comparison of the CSTRs

We have discussed two different chemostatmodels with two different kinetic
forms: Monods Kinetics and the Michaelis-Menten Inhibited kinetics. Two
other well studied kinetics are Competitive Substrate Inhibition (where the di-
mensionless µ = S

1+S+ S2

KI

) and Competitive Product Inhibition (µ = S
1+S+KIX )

that we call CSI-CSTR and CPI-CSTR.

In the table below there is a summary of the models (we have excluded
the trivial X-nullcline X = 0 and abbreviated nullcline ‘XNC’ and ‘SNC’ for
X-nullcline and S-nullcline).

By comparing the phaseportraits (figure 3.2) it is easy to see obvious simi-
larities in all models. Some common features are the existence of the invariant
line and the equilibrium points. The invariant line exist due to the fact that
the model produces a constant value of bacteria density per consumed unit of
substrate density. The equilibrium points vary with the parameters α1, α2 and
various constants. By choosing them carefully we may determine the position
of the equilibrium points in the phase-plane, or we can force the model to flush
the bacteria population out of the chemostat.

Looking at the CSI-CSTR one can see that the steady state value for S is
relatively low (compared to the other models), one can reason that this is due
to the response of this model to inhibition of S. In this model we can also see
that the points on the Euler path never reach large values of S (relative to the
other models), this must a problem for real CSI-CSTRs: starting such a reactor
must be done carefully. Another feature of this model is that the vectorfield is
not “clockwise” around the non-trivial steady state. Instead it seems to rapidly
push a state towards the unstable steady state (for small or large values of both
S and X) and close to the invariant lines it pushes the state towards the trivial
or non-trivial steady state.
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Model Monods Chemostat CSI-CSTR

µ S
1+S

S

1+S+ S2

KI

dX
dt α1

S
1+S X − X α1

S

1+S+ S2

KI

X − X

dS
dt − S

1+S X − S + α2 − S

1+S+ S2

KI

X − S + α2

XNC S = 1
α1−1 S = KI(α1−1)

2 ±

√

(KI (α1−1)
2 )

2
− KI

SNC X = (α2−S)(1+S)
S X =

(α2−S)(1+S+ S2

KI
)

S

limit − KI → ∞

Model MMI-CSTR CPI-CSTR

µ S
1+S

1
1+ X

XC

S
1+S+KIX

dX
dt α1

S
1+S

X
1+ X

XC

− X α1
S

1+S+KIX X − X

dS
dt − S

1+S
X

1+ X
XC

− S + α2 − S
1+S+KIX X − S + α2

XNC S =
1+ X

XC

α1−(1+ X
XC

)
S = XKI+1

α1−1

SNC X = (α2−S)(1+S)

S+ 1
XC

(α2−S)(1+S)
X = (α2−S)(1+S)

S−KI(α2−S)

limit XC → ∞ KI → 0

The other three models, the chemostat, the MMI-CSTR and the CPI-CSTR
are quite similar in comparison to the CSI-CSTR. They have the similar null-
clines and steady states in almost the same places and their vectorfields are also
similar. The chemostat S-nullcline is parallel to the X-axis and in two other
models this nullcline increases with increasing values of X . This can be inter-
preted as an inhibiting effect of X on µ: the vectorfield changes from pushing
a state towards increasing X ’s to smaller X ’s when it crosses the S-nullcline
(from large values of S). Monods chemostat does not “feel” this inhibition and
does not care if the value of X is very large, it is S that determines if X should
grow or not.

The striking similarities of the MMI-CSTR and the CPI-CSTR are probably
an effect of their very similar µ’s, only the denominator differs.
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Figure 3.2: Phaseportraits of Monods Chemostat, the CSI-CSTR, the MMI-
CSTR and the CPI-CSTR. Eulerpaths leading to their stable non-trivial steady-
states are included.



Chapter 4

Other CSTR-types

We shall see that there are other ways of designing CSTRs that differ from the model
of a one-tank reactor with constant flow. This chapter will describe chemostats in
series, a chemostat with recirculation, and a chemostat-like enzyme reactor.

4.1 Chemostats in series

It is sometimes convenient to use CSTRs in series, if for example the product we
want is produced by “mature” bacteria we would like to have a first tank where
there is rapid production of bacteria. A second reactor would allow bacteria to
maturate in a different chemical environment (pH, temperature, etc.) and to
produce our desired product.

?

F1, X0, S0

?

F1, X1, S1

?

F2, S2 (X2 = 0)

?

F1 + F2, X̄, S̄

V1, µ1 V2, µ2

Figure 4.1: Two Chemostats in series with sterile feed in the second.

We will consider two chemostats in series. We assume the first reactor feeds
the second chemostat with X1, S1 and flow F1. There is also another inflow to
the second chemostat of substrate with the density S2 and with inflow F2. The
outflow from the second chemostat is thus F1 +F2. The volumes of the reactors
are V1 and V2. The equations for the second reactor are:
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





dV
dt = F1 + F2 − (F1 + F2) = 0

dX
dt = F1

V1
X1 + µX − F1+F2

V2
X

dS
dt = F1

V1
S1 − αµX − F1+F2

V2
S + F2

V2
S2

(4.1)

We let D1 = F1

V1
and D2 = F1+F2

V2
⇔ F2

V2
= D2−

F1

V2
= D2−D1

V1

V2
(> 0)

gives us the equations describing the equilibrium point in the second chemostat:

{
dX
dt = D1X1 + µX̄ − D2X̄ = 0

dS
dt = D1S1 + (D2 − D1

V1

V2
)S2 − αµX̄ − D2S̄ = 0

We assume that µ 6= µ(X) for simplicity. We notice that there is only one
solution to the first equation: D1X1 + µX̄ − D2X̄ = 0 ⇔ X̄ = D1X1

D2−µ .
From the second relation and depending on the rate expression, we get dif-

ferent values of S̄ and X̄.

4.2 Chemostat with recirculation

In some cases it is shown that recirculation of a fraction of the bacteria increases
the productivity of the system.

?

F , S0

-

?

?

Separator

X̄1, S̄1

F (1 + ϕ)

F , (1 − c)X̄1, S̄ 6= S̄1

ϕF , cX̄1, S = 0

Figure 4.2: The chemostat with recirculation.

Here we let the fraction ϕ of F recirculate back into the reactor. In this
fraction of medium (assumed to be without any S) we let the fraction c of X̄
be reinserted into the system. The equations become:

{
dX
dt = +cX · ϕD + µX − X(1 + ϕ)D

dS
dt = −αµX − D(1 + ϕ)S + DS0

(4.2)

When searching for steady states we let X 6= 0 and from the first line in
(4.2) we get dX

dt = 0 ⇔ µ = (1+ϕ−ϕc)D, now we notice that ϕ(1−c) > 0,
since c is only a small fraction, and thus: µ > D, which is better that the
reproduction we had in the earlier chemostats.

Again, different rate-expression give rise to different X̄ and S̄. With Monods
µ we get: µ = µmaxS

KS+S = (1 + ϕ − ϕc)D The steady state is thus: (X̄, S̄) =
(

S0−(1+ϕ)S̄
α(1+ϕ−ϕc) ,

KSD(1+ϕ−ϕc)
µmax−D(1+ϕ−ϕc)

)

.
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4.3 Chemostat-like enzyme reactors

In this section we consider a CSTR with enzymes instead of bacteria.

If we make two fair assumptions: (1) one substrate molecule spawns one
product molecule giving S0 − S = P − P0 (thus “consumed substrate” = “pro-
duced product”), and (2) the enzyme concentration (E) is constant (and equal
to one) as time passes, we get the equations:







dE
dt = 0 = 0

dS
dt = D(S0 − S) − 1 · E · µ = D(S0 − S) − µ

dP
dt = Eµ − DP = µ − DP

(4.3)

This is sufficient to find S̄ if we first specify the kinetics. Let us use the
Michaelis-Menten kinetics: µ = µmaxS

KS+S = D(S0 − S) ⇒

S =
S0−KS−

µmax
D

2 ±

√

(
S0−KS−

µmax
D

2 )2 + S0KS .

This is one way of finding the steady state S. It is however not always
what we are interested in. If we use an alternative approach and introduce the
relation δ = S0−S

S0
, corresponding to the fraction of S0 that has been converted

into product. We notice S = S0(1 − δ) and we are able to search the dilution
coefficient as a function of δ and S0 instead. This is often very convenient. We
will now look at D’s for different kinetic cases.

Michaelis-Menten kinetics in an enzyme reactor

From (4.3) we get the relation D = µ
(S0−S) and the Michaelis-Menten kinetics

is µ = µmaxS
KS+S so we get: D = µ

S0−S = µmaxS
(KS+S)(S0−S) = µmax(1−δ)

δ(KS+S0(1−δ)) .

Competitive Substrate Inhibition in an enzyme reactor

Now we apply Competitive Substrate Inhibition instead and in a similar way
we get: D = µ

S0−S = µmaxS

(S0−S)(KM+S+ S2

KI
)
. Again using δ = S0−S

S0
gives us:

D = µmax/δS0

1+
KM

S0(1−δ)
+

S0(1−δ)
KI

.

Competitive Product Inhibition in an enzyme reactor

We remember the stochiometric relation S0−S = P−P0 ⇔ P = S0−S+P0,
allowing us to eliminate P in µ.

By the same procedure as above and get:

D = µmaxS
(S0−S)(KM (1+PKI)+S) =

1−δ
δ

µmax

KM+KM KI(δS0+P0)+S0(1−δ) .

Michaelis-Menten Inhibition in an enzyme reactor

This is actually not possible, since the kinetic expression contains X , a variable
not present in an enzyme reactor.
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The dilutions rates summarised

Kinetics Kinetic expression Dilution coefficient

Michaelis-Menten µmaxS
KS+S

µmax(1−δ)
δ(KS+S0(1−δ))

CSI µmaxS

KM+S+ S2

KI

µmax/δS0

1+
KM

S0(1−δ) +
S0(1−δ)

KI

CPI µmaxS
KM (1+PKI)+S

1−δ
δ

µmax

KM+KM KI(δS0+P0)+S0(1−δ)



Chapter 5

Controlled CSTRs and the

turbidostat

In this chapter we will discuss controlled CSTRs. By controlling a CSTR we will
see that the possibility to choose a steady state increases. Controlling a CSTR can
also be wise when the concentration of substrate in the inflow is fluctuating to limit
fluctuations in the population density.

5.1 Controlled CSTRs

There are many ways to use automatic control in CSTRs to achieve good results.
One general name for a class of controlled CSTR’s is auxostats. An auxostat is
often defined as a continuous culture system in which the concentration of one
of the components, for example the pH-level, biomass concentration, or nutri-
tion concentration, is predetermined and the system is controlled to maintain a
constant level of this component.

One popular auxostat is the pH-auxostat since the active bacteria produce
organic acids as wasteproducts, lowering the pH. Measuring the pH is cheap
and simple, and since pH is correlated to the productivity this type of auxostat
is easy to control.

Another auxostat is the turbidostat. The turbidity of a solution that means
how much light it absorbs is simple to measure, and is proportional to the
density of biomass X in the vessel. If there is too much density more solution
is added, and vice versa.

In general we want to fix our X at a value XP, a point in the proximity of
the uncontrolled systems steady state X0. By doing this we assume that the
behaviour of the system is the similar to its behaviour in the neighbourhood of
X0, even if this might be at some distance from X0.

A generalised controlled system can be described as:

d
dtX = AX + BU, Y = CX, (5.1)

where U contain variables used to control the system and B is a constant matrix,
for example the values from a linearization around the point of interest. Y is
an output vector letting us observe values of X, and C describes how X and Y

are related. The dimension of the vector BU must be the same as for AX.
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?

F (t), S0

?
Lamp

⊗ ;

�

+/−
Detector/

Controller

X(t), S(t)

?

F (t), X(t), S(t)

Figure 5.1: The general idea of the Turbidostat. Via a closed loop in the
reactor light is passed through the solution. A detector/controller measures the
turbidity and sends a signal to regulate the inflow of nutrient.

We will consider the case where U = X and the system is controlled by
varying D. We let D = D0 +D(X, S). Returning to (2.6) where D0 corresponds
to our old D and with X0 = 0 we have:

{
dX
dt = µX − D0X − D(X, S)X
dS
dt = −αµX − D0(S − S0) − D(X, S)(S − S0)

(5.2)

We will not yet describe D(X, S) in detail, but we will require two proper-
ties. The first constraint is that we want D(XP) = 0, we do not want to
change anything if we are in the required state XP. The other constraint is
D0 + D(X, S) ≥ 0, since we add positive volumes of the nutrition solution to
the CSTR.

We linearize (5.2) around X0: d
dtX = AX + BX where:

A =

(
µ′

XXP + µ − D0 µ′
SXP

−αµ′
XXP − αµ −αµ′

SXP − D0

)

B =

(
−D′

XXP −D′
SXP

D′
X(S0 − SP ) D′

S(S0 − SP )

)

This expression can now be used to derive convenient forms of controlled
CSTRs.

Two important questions about controlled systems is their controllability
and stabilisability. A system that is controllable is also stabilisable. By control-
lability we mean that a system, through a control policy, can be forced to move
from an initial state Xi to a desired state Xd in finite time. Controllability in
this case is guaranteed when det[B AB . . . An−1B] 6= 0, and is not obtained
for the turbidostat. This means that not all states can be obtained in finite
time.

Stabilisability is obtained when all eigenvalues of A can be made negative
by choosing a suitable control, but it may happen that eigenvalues of A are
negative from the beginning. This situation corresponds to our normal stability
condition when the trace is negative and the determinant is positive.
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5.2 Invariant line for CSTRs controlled with D

As for the uncontrolled systems we can examine d
dt (S + αX). We end up with:

d

dt
(S + αX) = −(S + αX − S0) (D0 + D(X, S))

︸ ︷︷ ︸

≥0

Thus if the equality αX = S0 − S is fulfilled, we tend to keep it fulfilled: the
minus sign in this relation ensures that we return to the invariant line if we for
some reason were to move away from it.

So there is an invariant line for CSTRs controlled with D and it is the same
as for the uncontrolled CSTRs.

5.3 The turbidostat

We will now look at the case where D(X, S) = D(X) = KD(X − XP ). XP is
the value of X we want to stabilize our CSTR about. If we apply µ = µ(S), we
have µ′

X = 0. Also: D′
S = 0 and D′

X = KD. The system is then:
{

dX
dt = µX − D0X − KD(X − XP )X
dS
dt = −αµX − D0(S − S0) − KD(X − XP )(S − S0)

(5.3)

This expression can be analyzed to learn how the controller action acts in this
case. If we search for a steady-state value of X we can ignore the trivial steady
state and end up with:

KDX = µ − D0 + KDXP ⇔







µ = D0, KD = 0

X = XP + µ−D0

KD
, 0 < XP < ∞

X ≈ XP , KD ≫ µ − D0

KD is the key here: without control action (KD = 0) we return to Monods
chemostat, for extremely large values of KD we end up with X = XP . For
reasonable values of KD we are close to XP . This middle expression also corre-
sponds to a nullcline.

By linearizing (5.3) we get:

d

dt
X = (A + B)X =

(
µ − D0 − KDXP µ′

SXP

−αµ + KD(S0 − SP ) −αµ′
SXP − D0

)

X

Now, sufficiently close to the steady state we can approximate D0 ≈ µ, allowing
us to do some changes:

d

dt
X ≈

(
−KDXP µ′

SXP

−αµ + KD(S0 − SP ) −αµ′
SXP − µ

)

X

As usual we want to know if this controlled system is stable and investigate
the trace and the determinant:

tr(A + B) = −KDXP − αµ′
SXP − µ

If µ is strictly growing (and its derivative positive) then indeed tr(A + B) < 0.
But if we for example have a CSI-CSTR µ′

S might be negative. A sufficient
condition is however KD > −αµ′

S .
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If we assume that we are close to the invariant line and can use αXP ≈

S0 − SP , we get the determinant:

det(A + B) = µ′
SKDXP (αXP − (S0 − SP ))

︸ ︷︷ ︸

≈0

+KDXP µ + XP µ(αµ′
S + KD)

det(A + B) ≈ KDXP µ + XP µ(αµ′
S + KD)

So we have a positive determinant if KD > −αµ′
S , or if we have µ′

S > 0. This
system is thus stable. But since we do not have controllability we are not really
sure where we arrive to in the phase-plane.

5.4 The phaseportrait of a turbidostat

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0

0.5

1

1.5

2

X 

S 

Figure 5.2: A phaseportrait of a Turbidostat. The diagonal dotted line is the
invariant line, the vertical dotted line corresponds to X = XP , the point-dotted
line is an Euler path starting in (0.73, 2.2) and the full line an X-nullcline. The
ring on the invariant line is where the steady state would have been without
the controller action. The arrows represent the vector-field composed of dX

dt and
dS
dt .

Looking at the phaseportrait of a Turbidostat, figure 5.2, the first striking
difference is the distance between the normal chemostat steady state and the
steady state of the turbidostat. But here there is also an invariant line as
before and a nullcline in about the same place as before. This nullcline depends
however strongly on KD.

In figure 5.3 we see how the phase portrait changes with increasing values
of KD: the nullcline tends to approach the line X = XP and thus the steady
state approaches the intersection of the null cline and of the invariant line.
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Figure 5.3: Comparing phaseportraits of Turbidostats with values of KD of
0.03, 0.3, 3 and 30.
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Chapter 6

Summary and conclusion

In this report several mathematical models of bacteria population growth in
bioreactors were analyzed.

In chapter 2 we explored two simple models of biological growth: exponential
growth and by taking into account the substrate concentration, S, the
logistic equation. The exponential growth is typically seen when resources
are good and the population is very small. The logistic equation explains
how a population is restricted by limited resources.

We introduced the in- and outflow of nutrient in our reactor, the Michaelis-
Menten kinetics and analyzed Monods Chemostat. Equilibrium solutions,
nullclines, the parameters α1 and α2 and the phaseportrait are found to
be useful characteristics.

Chapter 3 is dedicated to the new model proposed: the Michaelis-Menten
inhibited CSTR. The MMI-CSTR exhibits different phaseportrait showing
how the MMI-CSTR responds to large values of X by inhibition.

A comparison of this model and Monods chemostat with the competitive
substrate and product inhibition has been made.

In chapter 4 we discuss chemostats in series, a chemostat with recirculation
and three chemostat-like enzyme reactors. We saw that in the chemostat
with recirculation we could achieve µ > D, and that chemostats in series
allow us to take into account different ambient conditions for the bacteria.

In chapter 5 we have explained how a controlled CSTR works and investi-
gated the turbidostat: it illustrates a simple way of controlling a CSTR.
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Appendix A

The Linearized stability

A.1 The Linearization

F (x), a one-variable function of x can be Taylor-expanded around a fix X . We
get F (X + x) = F (X) + F ′(X)x + O(x2). For small perturbations of x around
X we get the linearization: F (X + x) ≈ F (X) + F ′(X)x, containing only the
constant and the linear terms.

For functions of two variables F (X + x, S + s) and G(X + x, S + s):
{

F (X + x, S + s) = F (X, S) + F ′
X(X, S)x + F ′

S(X, S)s + O((x + s)2)

G(X + x, S + s) = G(X, S) + G′
X(X, S)x + G′

S(X, S)s + O((x + s)
2
)

If F (x, s) = dX
dt , G(x, s) = dS

dt and the point (X, S) is an equilibrium point then
the linearization is:

{
dX
dt = F (X + x, S + s) ≈ F

′

X(X, S)x + F
′

S(X, S)s = a11x + a12s

dS
dt = G(X + x, S + s) ≈ G

′

X(X, S)x + G
′

S(X, S)s = a21x + a22s

A convenient notation is d
dtX ≈ AX =

(
a11 a12

a21 a22

)

X, and is often used when

looking at the chemostat or other dynamical systems of similar mathematical
form.

A.2 The Stability

Now, let us use our linearization and look at some conditions needed for the
linearization to be stable. We have d

dtX = AX. Supposing that

x = c1 · v1eλ1t + c2 · v2eλ2t we get, for each λ: d
dtX = λAeλt = Aveλt. Elim-

inating the exponential in the two last terms, we get the well-known equation:
det(A − λI) = 0 that has two solutions:

λ =
a11 + a22

2
±

√

4(a12a21 − a11a22) + (a11 + a22)
2

2
⇔

λ =
tr(A)

2
±

√

−4det(A) + tr(A)
2

2
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In order to have stable solutions we must have Re(λ) < 0 and thus tr(A) < 0. If
we assume that tr(A) < 0 and look at the first λ (with a plus), we get λ1 < 0 ⇔

tr(A)

2
+

√

−4det(A) + tr(A)2

2
< 0 ⇔ 0 < det(A)

Thus, for us to not have a positive real part in our exponentials, we have
to have: tr(A) < 0 and det(A) > 0. This allows us to simply look at our
linearization to know a lot of our how our system behaves near an equilibrium
point.

Worth noting is also if the term

√

−4det(A) + tr(A)
2

is real or complex. If
a λ has a negative real part and no complex part in an equilibrium-point, this
point could be considered to be a stable node because the exponentials include
only negative real numbers.

If λ contains some complex parts we can easily discover that the pair of λ’s
must be complex-conjugated and that the exponentials give rise of a spiral-like
motion in the (X,S)-plane around the equilibrium-point. We call the point a
stable spiral if tr(A) < 0.



Appendix B

A Matlab M-file

This appendix displays a Matlab M-file used to visualize the phase portrait and to
control calculations. This example explains the principle, and it is easy to change,
for example, the kinetic expression to fit another model.

function chemostat_inhibited(alpha1, alpha2, xp0, sp0, xc)

%
%chemostat_inhibited Displays a phaseportrait, nullclines
% and an Euler-path of an inhibited Chemostat.

% chemostat_inhibited(alfa1, alfa2, np0, cp0, nc) will run if
% alpha1 > 1/xc, thus there is a reproduction.

% alpha2 > 1/(xc*alpha1-1), thus there is sufficient stock-nutrition.
% xp0 > 0 , you can not have a nonpositive population.
% sp0 > 0 , you can not have a nonpositive concentration.

% xc > 0
%

% The blue arrows represent the vectorfield.
% The black lines are two of the three nullclines.

% The black dotted line is the invariant line (no solution crosses it).
% The red line is an Eulerpath, starting in + and ending in *.
%

% Try the following:
% chemostat_inhibited(5, 3, 0.2, 0.3, 6)

%
% by Per Erik Strandberg, 2003-2004.
%

% Start-condition:

%------------------
if ((alpha1>1) & (alpha2>0) & (sp0>0) & (xp0>0) & xc>0),

if (alpha2<1/(alpha1-1)),
disp(’ ’)

disp (’ (HINT: Only the trivial steady state, alpha2 is too small...)’)
else

disp(’ ’)
disp (’ (HINT: Two steady states, alpha2 is quite large...)’)

end

% The non-trivial equilibrium-solution:
%-----------------------------------------

a = (xc+1-alpha2-xc/alpha1);
b = (-alpha2-xc/alpha1);
sbar = -a/2 + sqrt(0.25*a*a-b) ;

xbar = -alpha1*sbar+alpha1*alpha2 ;

hold off
plot(xbar, sbar, ’rO’)
hold on

plot(0, alpha2, ’rO’)
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% The vector-field:
%--------------------

[xx,ss]=meshgrid(0.01 : (alpha1*alpha2*1.3/15) : alpha1*alpha2*1.3 ,
0.01 : (alpha2*1.3/15) : alpha2*1.3);

dx= (alpha1*xx.*ss./(ss+1))./(1+xx./xc)-xx;
ds= -(xx.*ss./(ss+1))./(1+xx./xc)-ss+alpha2;

quiver(xx,ss,dx,ds, 1)

% One of the x-nullclines:

%----------------------------
x_x_nullcline=[0.001: (- (1-alpha1)*xc)*0.9/100 : - (1-alpha1)*xc*0.999];

c_x_nullcline = (1 + x_x_nullcline./xc) ./ (alpha1 - 1 - x_x_nullcline ./ xc) ;
plot(x_x_nullcline,c_x_nullcline,’k’)

% The s-nullcline:
%------------------

s5 = [(-0.5*(xc+1-alpha2) + sqrt(0.25*(-xc-1+alpha2)^2+alpha2))*1.001
: ((alpha2*0.999)-((-0.5*(xc+1-alpha2) +

sqrt(0.25*(-xc-1+alpha2)^2+alpha2))*1.001))/100
: alpha2*0.999];

x5 = xc*((alpha2-s5).*(1+s5)) ./ (xc*s5 -(alpha2-s5).*(1+s5));

plot(x5,s5,’k’)

% The Invariant line:
%-------------------------
s_inv=[0: alpha2/3 :alpha2];

x_inv=alpha1*alpha2 - alpha1*s_inv;

plot(x_inv,s_inv,’:k’)

% The Euler-path:
%------------------
xp=[1:1:1000];

sp=[1:1:1000];
xp(1)=xp0;

sp(1)=sp0;
i=1;

while i < 1000,
xp(i+1)=xp(i)+0.005*((alpha1*xp(i)*sp(i)/(sp(i)+1))./(1+xp(i)/xc)-xp(i));

sp(i+1)=sp(i)+0.005*(((-1)*xp(i)*sp(i)/(sp(i)+1))./(1+xp(i)/xc)-sp(i)+alpha2)
i=i+1;

end

plot(xp,sp,’r-.’)

plot(xp(1), sp(1),’r’)

plot(xp( 1), sp( 1), ’r+’)
plot(xp(1000), sp(1000), ’r*’)

%fixing the axis
%----------------

axis([0 alpha1*alpha2*1.2 0 alpha2*1.2 ])

disp(’ chemostat_inhibited.m by Per Erik Strandberg, 2003-2004. Finished OK.’)
disp(’ ’)

% The illegal indata case:
%---------------------------

else
disp(’ chemostat_inhibited.m by Per Erik Strandberg, 2003-2004.’)
disp(’ Did not Finish OK. (You used illegal indata.)’)

disp(’ ’)
disp(’ For syntax help type: help chemostat_inhibited .’)

disp(’ ’)
end
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