
Software Test Data Visualization with Heatmaps
– an Initial Survey

Per Erik Strandberg

Westermo Research and Development, AB
Email: per.strandberg@westermo.se

Abstract
A visualization of nightly regression test results pro-
vides rapid feedback, and may aid in making decisions
on software projects. However, visualizing test results
from sparse and distributed nightly regression testing
is non-trivial. We have conducted a structured litera-
ture review focusing on how heatmaps are best used for
software test data visualization. By identifying existing
studies, we have discovered how stakeholders use the vi-
sualizations, how they are valuable, the approaches used
for plotting and the proposed future research. The re-
view identified four papers that describe visualizations
that target managers, experts, testers and code maintain-
ers. The visualizations are used for making decisions,
giving support, or provide early warnings. Typically the
source code of the software under test is an important
part of the plots.

1 Introduction
Visualizing source code properties such as structure and
code churn (defined in 2.2) are well studied practices.
Approaches where these characteristics can be seen over
time have also been studied [11].

Westermo Research and Development AB (West-
ermo) design hardware and software for robust indus-
trial communication devices. In order to provide rapid
feedback for ongoing software development these de-
vices are tested nightly for regressions using a test
framework that has been developed and supported over
several years. The nightly testing is performed on a
number of test systems, each with several devices in a
network topology.

This nightly testing generates a lot of test results data.
This data is sparse: not every test is tested every night.
The data is also multidimensional: a test outcome is tied
not only to a test case and a point in time, but also to
one of many code branches under test, and to one of
many physical test systems. The software solution im-
plemented to select test cases for the nightly regression
test suites, SuiteBuilder, is described in [21].

A heatmap can be defined as a graphical representa-
tion of data. A two-dimensional matrix can be repre-
sented with colored rectangles for each element, given

Figure 1: Example of a heatmap that illustrate results from an
affinity experiment where different genes and proteins bind.
Dark areas indicate a low interaction. This image is also suit-
able for illustrating a common challenge for the color blind:
they can often not distinguish the red areas from the green ar-
eas in this plot. Image from [25], in public domain.

the values in the matrix. In Figure 1 affinity between
genes and proteins is illustrated with colors close to
black as no or low affinity. Other colors indicate other
types of affinity. Heatmaps have been in use since 1957.
The term was coined in 1991. [25].

At Westermo we have implemented several prototype
visualizations of the nightly test results using techniques
similar to heatmaps. But these are under frequent dis-
cussion with issues such as poor maintainability, low us-
ability for the color blind, and missing features such as
the typical “back” button in a web browser.

In this systematic literature review (SLR), or survey,
we investigate literature on visualizations of test result
data using heatmaps, with or without source code char-
acteristics.

The contributions of this paper are all related to sum-
marizing existing research: (i) Existing research on soft-
ware test result heatmaps indicate that these are used to
support test planning, for warning systems, and to aid
in making other decisions. (ii) Existing research indi-
cates that these visualizations target senior developers,

1

project managers, test managers or testers. (iii) Existing
research has to a large extent been evaluated in coop-
eration with industry practitioners and large free, libre
or open source software (FLOSS) projects. (iv) Data
used for the visualizations are version control system
(VCS) data from both the software under test and the
test framework, historical test data, code coverage data
and data from issue trackers. (v) Future work mentioned
in the literature includes: increasing the scale, improv-
ing the evaluation, improving usability, and incorporat-
ing automated warnings.

In Section 2 we introduce related work. Section 3 de-
scribes the survey method used. Section 4 describes the
findings of the survey and in Section 5 we discuss these
findings. The paper is concluded in Section 6. Summa-
rized review protocols are presented in Appendix A.

2 Related Work
In this section we discuss previous research related to
visualization of test data.

2.1 Visualization of Source Code
Source code can be hard to grasp. Visualizing it can
be done in many different ways. An influential publica-
tion in this field is [4], from 1992, where source code is
shown from a helicopter view as thin colored lines. The
colors represent an attribute of the code, such as age.

Several surveys on software visualization have been
published, a recent example is Caserta and Zendra [2].
Here the authors present methods for visualizing static
aspects with the focus of source code lines, class met-
rics, relationships, and architectural metrics. Six meth-
ods for visualizing evolution are also presented. Meth-
ods include metaphors like cities (with skyscrapers for
large software units, flatter building for smaller ones,
and links illustrating code dependencies) and also more
known approaches such as UML diagrams.

2.2 Software Fault Prediction
An influential publication where test results data is used
is [12], from 2002, where a combination of source code,
code coverage, unit tests and test results is illustrated
as a sort of extended Integrated Development Environ-
ment (IDE) view. This publication does not mention
heatmaps and is not included as a relevant publication
in this survey.

Nagappan and Ball defined code churn in 2005, [14],
as: “Code churn is a measure of the amount of code
change taking place within a software unit over time”.
They use it as a predictor of defects. Another, widely
cited, paper by Ostrand et al, [17], uses source code data
combined with data from other sources, such as issue
trackers, to predict the number and location of faults in
software units. By using code churn and other charac-
teristics software faults can be predicted with very good
accuracy.

Figure 2: Example of a color test plate from the Ishihara test,
a color perception test for red-green color deficiencies. This
test plate is designed to show the number 74 for individuals
with normal color vision and the number 21, or nothing, for
individuals with various types of color blindness. Image from
[24] in public domain.

2.3 Software Evolution

The need to visualize changes in source code has lead
to attempts to stabilize the layout of source code units.
One promising and recent approach is presented in [11],
where the authors present a proof of concept for visual-
izing changes in cyclomatic complexity over time in a
chart that also visualizes source code structure, with a
more deterministic positioning of code components.

2.4 Dashboard Visualization

A common approach for continuous quality monitoring
and control in the industry is having a “dashboard”, [3].
These aim at presenting one or more key performance
indicator (KPI) over time. An recent paper with lessons
learned is presented in [9].

2.5 Color blindness, Ishihara, and Usabil-
ity

Color blindness is a condition where an individual can-
not fully see color or differences in color. It was first
described by John Dalton in 1798. Roughly 8% of all
men have some form of color blindness. [24]

When a difference in color is used to carry informa-
tion there is a risk that color blind individuals cannot
receive the information, or receives distorted informa-
tion. This is used in the classic Ishihara test, where a
number is hidden in a colorful dotted pattern. The test
was designed to detect color blindness. Figure 2 illus-
trates a color test plate where color blindness leads to
distorted information, in this case the number 21 is seen
instead of the correct number 74. [26]

2

The scope for this paper is not on color blindness.
However, many users of the current implementation at
Westermo are color blind. Zeileis et al phrases it as
follows when discussing colors for statistical graphics:
“different areas of a plot should still be distinguish-
able when the graphic is displayed on an LCD projec-
tor rather than a computer screen, or when it is printed
on a grayscale printer, or when the person viewing the
graphic is color-blind.” [23]

2.6 Two Reference Papers

Prior to this survey two publications on software test
data visualization with heatmaps were known to us. One
was written by Feldt et al in 2013, [8], and the second
by Engström et al, [7] in 2014. In this paper we refer to
these two publications as the two “reference papers”.

These papers propose visualizations of test results
data. Feldt et al use a heatmap where test results over
time and over test cases are used. This is to be com-
bined with a heatmap showing code churn over time, a
simplified illustration is shown in Figure 4. Engström et
al propose a heatmap where the structure of the source
code is displayed in a tile-like pattern where the tiles are
colored based on test results, see Figure 3.

2.7 Test Results Visualization Surveys

However, to the best of our knowledge there are no ex-
isting surveys on visualization techniques for software
test data that explicitly covers heatmaps.

In this initial survey we wanted to discover a wider
range of scientific publications on visualizing regression
test results with heatmaps. We knew about two refer-
ence papers but wanted a broader knowledge of the field.

3 Survey Method
Our goal in this study is to follow the guidelines for con-
ducting a SLR proposed by Kitchenham et al in [13].
The coming sections describe the survey phases: plan-
ning, conducting and notable events.

3.1 Planning the Survey

In order for this survey to have a relevance to practi-
tioners in the industry we chose the following research
questions (RQs) that we also motivate and explain:

RQ1: What studies have been performed on
heatmaps in a software testing context? We want to
know about other publications than the two reference
papers. What Universities and/or companies have been
involved in this research?

RQ2: Who are the involved stakeholders? What roles
are these visualizations targeting. Our initial specula-
tion is that test managers and/or project managers are
interested in monitoring progress and in allocating test
resources for further testing. Another approach that can

be considered is that software developers, test frame-
work developers and test case developers want to mon-
itor the progress of the code or tests. We speculate that
top level managers and customers are not a typical target
audience, but we would gladly incorporate results from
any such publication in this survey.

RQ3: How are heatmaps a valuable tool for practi-
tioners in the industry? This question might be sensi-
tive: If we consider the possibility that heatmaps have
no or very little value for practitioners in the industry,
then there is still a possibility that publications portray
this field of research as very promising for reasons other
than the public good: perhaps to reassure continued re-
search funding. We speculate that an evaluation with an
industry partner indicates that an approaches has actual
value to practitioners.

RQ4: What approaches to visualization have been
investigated? We want to know about possible data
sources used in the visualizations. What possible di-
mension on the axes has been explored?

Questions regarding implementation techniques have
been omitted, for example: “Is the Python library X
more or less suitable than JavaScript library Y for a vi-
sualization of Z?”.

The structure of the test results data is also ignored
in this initial study. The data structures used is an im-
portant topic that may have a direct impact on the possi-
bilities for visualization since without adequate data for
X we cannot visualize X properly. We consider these
questions to be out of scope for this survey.

A protocol was designed in order to capture the rele-
vant aspects of the publications, and to not miss any in-
formation needed to answer the research questions. The
headings of this protocol and examples are presented in
the following paragraphs.

Affiliation Universities, or the like. Examples: (i) Uni-
versity of Zurich, or (ii) Ericsson AB

Focus or Research Question What is the focus of the
paper? Example: Identify early warning indicators
about potential problems with unexpected cost.

Data sources What data is used in the visualization?
Examples: (i) Version control system (VCS) infor-
mation, or source code, (ii) Data from issue track-
ers.

Stakeholder Recipient or user of the visualization. Ex-
amples: (i) Senior Developer, (ii) Test Manager,
(iii) Project Manager, and so on.

What is Visualized? What is at focus in the visualiza-
tion(s) used in the publication? Example: code
churn per source code component over time.

How is this valuable? Why is this visualization valu-
able to the stakeholders? Example: Support in test
planning.

Environment In what type of environment is this study
conducted? In particular: are there any industrial

3

Alpha N Alpha N+1

Figure 3: Visualization of test coverage items in two releases, adapted from Engström et al, [7], with colors omitted for clarity.
The left and right structures both illustrates test coverage items (source code structure) with many (left) or few (right) test
failures.

0 5 10 15 20
Time (day)

0

1

2

3

4

5

So
ur

ce
 F

ile
 (i

nd
ex

)

Source code changes over time (darker = more changes)

0 5 10 15 20
Time (day)

0

5

10

15

20

Te
st

 C
as

e
(in

de
x)

Test results over time (black = fail)

Figure 4: Illustration of a visualization of code changes in
source code (top), and test results over time (bottom). From
Feldt et al, [8], with colors omitted for clarity.

partners? Examples: (i) Evaluation with data from
FLOSS projects. (ii) Evaluated with two separate
industrial partners.

Other Comments Examples: (i) Does not include test
results data. (ii) First two words in abstract are “test
managers”.

3.2 Conducting the Survey

The stages involved in this study are (1) inclusion based
on search terms, (2) exclusion based on search terms,
(3) exclusion of duplicates, (4) exclusion based on title,
(5) exclusion based on abstract, (6) exclusion based on
availability, and (7) exclusion based on the entire publi-
cation. The rest of this section describes these phases in
detail, an overview is presented in Table 1.

Several electronic databases exist for supporting
structured review papers. Notable examples include: In-
spec, Compendex, ACM Digital Library, IEEE Xplore,
ScienceDirect, Springer LNCS and Web of Science.
Due to time constraints we have only investigated two

databases: IEEE Xplore1 and ACM Digital Library2.
In order to satisfy our research questions we used four

search terms: (i) visuali* in order to limit the search
to papers that explicitly mention visualization, (ii) test*
and (iii) software were added to limit the search to pa-
pers on software testing. Finally (iv) heatmap* was
added with “heat map*” as an alternative spelling. One
of the reference papers did not occur in the search re-
sults unless the final term had an asterisk, this was due to
the use of “heatmaps” as opposed to “heatmap”. These
terms yielded 368 publications. To handle the many pa-
pers, and to support the review process, we used spread
sheets exported from the databases.

An initial look at the title of the papers revealed that
many papers were obvious false positives. This leads
to a set of excluding search terms: patient, climate and
biolog*. This excluded 82 papers.

Given the terms for inclusion and exclusion we found
a total of 286 candidate papers. Four duplicates were
removed from this set. Papers were now excluded based
on reading nothing but their title. Publications with titles
such as “Dolphin Detection and Tracking” were among
the excluded ones. This reduced the number of candi-
dates to 54.

The abstracts of the remaining publications were now
read in order to only keep relevant publications. Another
37 papers were excluded. A surprisingly large amount
of these dealt with experiments involving eye tracking.
We speculate that this might be related to how eye track-
ing experiments are performed: perhaps a software lay-
out is under evaluation, it is tested with real people, and
the results visualized with a heatmap. If this is the case
then there is a close mapping to the key terms we were
interested in.

Of the seventeen papers that remained we were un-
able to find five in electronic format. These five were
all from 1990 or older so these were also excluded. The
twelve papers that remained were fully read and each
got a survey protocol, as described in Appendix A. Af-

1http://ieeexplore.ieee.org/
2http://dl.acm.org/

4

Table 1: Phases of inclusion and exclusion.

Step Activity Criteria IEEE ACM tot.
1 inclusion terms 269 99 368
2 exclusion terms 189 97 286
3 exclusion duplicates 189 93 282
4 exclusion title 24 30 54
5 exclusion abstract 9 8 17
6 exclusion availability 9 3 12
7 exclusion full text 3 1 4

0 20 40 60 80 100
Test Coverage (%)

0

10

20

30

40

50

60

70

Is
su

es
 fo

un
d

file01

file02

file03

file04

file05

file06

file07
file08

file09

file10 file11
file12

Distribution of Issues vs Test Coverage and Size

Figure 5: Illustration of a visualization of test coverage, is-
sues found and size of source files. From Haron and Syed-
Mohamad, [10], with colors omitted for clarity.

ter reading the complete papers only four relevant pub-
lications remained, two of these were the reference pa-
pers, the third one was a publication by Haron and Syed-
Mohamad, [10], and the fourth one by Orso et al [16].

3.3 Notable Events during the Survey
Two papers were known a priori, [7, 8]. These were
used as an evaluation of the criteria for inclusion and
exclusion.

During the reading of the full papers we sometimes
rapidly discovered that papers were obviously not rele-
vant. This could be understood even after only reading
the first page of a paper, or even after reading just the
introduction. For future studies we would like to pro-
pose an additional filter before reading the entire paper:
exclusion based on first page.

4 Results

4.1 Overview
The databases investigated and the method used re-
vealed four relevant publications. These were published
in 2003, 2013, 2014 and 2015. Two of them have had
a clear industrial focus and were also evaluated with in-
dustry partners, whereas the other two were evaluated
with FLOSS projects or with a limited set of individuals
in the academia. All publications included in this sur-
vey have been used for visualizations of large software
systems.

Two of the publications are from Universities in the
south of Sweden and since a few of the authors of these
papers have also co-authored other publications it is
tempting to assume that they have somehow exchanged
ideas or had an informal collaboration when conduct-
ing these studies. The other two publications are from
Georgia Institute of Technology and Universiti Sains
Malaysia. We think of these geographically separated
areas as three different research clusters.

Three of the publications have a clear goal of support-
ing activities – this is made clear by their titles: “Sup-
porting software decision meetings. . . ”, “Supporting re-
gression test scoping. . . ” and “. . . assessment of soft-
ware test adequacy” respectively. The fourth publica-
tion aims at locating issues in the code based on cus-
tomer usage. In a strict sense they are not using test
data, but they specifically mention that their approach is
a generalization of another approach where test-case in-
formation is used for fault localization, so for this reason
it is included in this study.

It appears as if two main visualization approaches
have been used: either the source code structure is used,
or evolution over time is used. Compare for example
Figure 3 that uses structure, with Figure 4 that uses time.

Only Orso et al mentions color blindness, but did not
let the possibility of having color blind stakeholders af-
fect their choice of colors: “we could use other ranges
of the color spectrum”, but they have not designed or
evaluated the spectrum they use with respect to color
blindness, nor has any of the other papers in the study
done so. We speculate that poor choice of colors in com-
bination with color blind staff renders parts of the visu-
alization unusable.

4.2 Answers to Research Questions
This section answers the research questions identified
and summarize the future proposed by the studies inves-
tigated.

RQ1: What studies have been performed on heatmaps
in a software testing context? We have identified four
publications: Orso et al 2003 [16], Feldt et al 2013 [8],
Engström et al 2014 [7], and finally Haron and Syed-
Mohamad 2015 [10].

RQ2: Who are the involved stakeholders? We have
identified four groups: (i) managers such as test man-
agers, project managers and also the more generic group
“managers”, (ii) experts such as technical leaders or test
experts, (iii) testers, and (iv) code maintainers.

RQ3: How are heatmaps a valuable tool for practi-
tioners in the Industry? Value, or rather use cases, men-
tioned in the publications are: (i) enabling early warn-
ings for quality risks, (ii) being able to give suggestions
for improvements of the code base, (iii) planning sup-
port, and (iv) support for making decisions.

RQ4: What approaches to visualization have been
investigated? Many of the publications focus on the
source code, and color it based on some property. En-
gström et al illustrate how the source code is partitioned
and color it based on test results, see Figure 3. Others,

5

Code Level File Level System Level

Figure 6: Visualization of three levels of abstraction. From statement (left) level, via file level (middle) to system level (right).
Darker shades of gray, or black, indicate a larger need for attention (such as failing tests). Three levels from Orso et al, [16],
with colors omitted for clarity.

including Feldt et al, illustrate this property over time
without showing the structure of the source code, see
Figure 4. Orso et al illustrates the source code in three
different levels of abstraction: from line of code up to
system level, see Figure 6. Haron and Syed-Mohamad
used size in lines of code of the components instead of
code structure as an axis, as well as test coverage and
number of issues found in the components, see Figure 5.
They illustrated this in a bubble chart, as opposed to in
a heatmap. Interestingly the study by Haron and Syed-
Mohamad was identified in our SLR since they discuss
another publication using heatmaps in their section on
related work, we come back to this topic in the Discus-
sion, in particular in Section 5.3.

The test results was sometimes shown over time,
[7, 8], or sometimes used as a static property, [10, 16].
One publication used test coverage instead of test re-
sults: [10].

Dimensions other than those of the source code and
those of test results that had been used were time, and
number of defects. Engström et al mentions that “some
participants also suggested that the visual analytics tool
should collect data from additional data sources such
as the source code repository. . . , requirement manage-
ment system. . . and the defect tracking system”, indicat-
ing that many other data sources have been considered.

Future work mentioned. To gather future work men-
tioned in the publications was not formulated as an ex-
plicit research question, but summarizing it is still mean-
ingful. Here we present the proposed future work: (i)
Increase scale: The authors requested answers to ques-
tions like: Will the implemented approach scale? How
can we use data-mining approaches to improve the visu-
alizations? Also: Can other data sources be integrated?
(ii) Evaluation: One publication requested a more thor-
ough evaluation: What direct and indirect effects are
there on the organization? (iii) Usability, clickability
and portability: Clicking or hovering with a mouse on
areas in the heatmap should provide further information.
Migrating to a web-based user interface was also men-
tioned. (iv) Automatic warnings: The possibility to add
features like automatic warnings was mentioned, this is
an extension to having an application for visualization
with a human looking at it.

5 Discussion

5.1 Publications not included

An informal study of author homepages has revealed
that at least two of the three research clusters identi-
fied have published more recent papers on visualization
of test results. The method we used did not identify
these papers, perhaps due to poor usage of search terms,
the narrow focus on heatmaps or the limited number of
databases used.

Only four publications were identified in this survey.
Apart from this representing threats to validity (as dis-
cussed in the Validity analysis in section 5.6), this is
also an interesting discovery: Is the approach of using
heatmaps a new approach? Have other visualization
techniques been used in the past, or has there perhaps
been a recent drift in terminology?

Only peer-reviewed papers were investigated: Per-
haps commercial or FLOSS tools do this already? In
particular: tool kits for visualization were not included.

No commercial tools were included in this analy-
sis. How could the findings from analyzing for ex-
ample the test results views in popular tools such as
MS Visual Studio, or Eclipse be included in a future
study? To what extent are practitioners in the indus-
try using commercial-off-the-shelf (COTS) software for
these kinds of visualizations? Are COTS tools as good
as the ones in scientific publications?

A popular belief is that other databases than those
mentioned in Section 3.2 are very relevant, for exam-
ple Google scholar.3 Queries here could of course also
have been considered. There is also a possibility that
unpublished literature could have been used as input for
this survey – a mitigation for this risk could have been to
contact the authors whom had published relevant publi-
cations to ask them for unpublished literature of interest
for this survey.

This SLR did not use techniques such as citation
snowballing, [22]. This technique extends the number
of publications that are potentially relevant by using the
references in a relevant paper to find other publications
of interest.

3https://scholar.google.com/

6

5.2 Visualization of Source Code

Most of the publications use source code in some way in
the visualizations, typically with test coverage data. By
doing this the authors seem to make a few assumptions:
(i) Source code data is applicable. (ii) If an executed test
case fails then the source code covered by the test case
is highlighted for attention – meaning that the test cases
produce results that are “true negatives” or “true posi-
tives”. (iii) Data from any test framework source code
is not of interest, and (iv) test coverage data is available
and correct.

We speculate that the approach of using source code
as the basis for the visualization may be a poor choice
in some cases. In particular in projects with agile, rapid
release or continuous integration approaches. This is
supported by Elbaum et al, [6]: “Traditional techniques
tend to rely on code instrumentation and be applicable
only to discrete, complete sets of test cases. In continu-
ous integration, however, testing requests arrive at fre-
quent intervals, rendering techniques that require sig-
nificant analysis time [code instrumentation] overly ex-
pensive, and rendering techniques that must be applied
to complete sets of test cases overly constrained. . . ”

This approach also assumes that test cases have very
few false negatives (incorrect test failures), as these
would “contaminate” the visualization.

We speculate that the assumption that VCS data
is available is also slightly optimistic: Why should
we exclude the possibility of using visualizations with
heatmaps in scenarios where the software under test is a
“black box”, such as for typical system level testing?

Furthermore, the selection of source code as a base
for visualization is only meaningful for stakeholders
where source code is meaningful and also more intu-
itive than test cases (or any other artifact). This might
eliminate requirements analysts, testers, and many other
roles as stakeholders. We speculate that this limits the
value of the visualization as it does not target a larger
audience.

If source code is used then it should be noted that
the industry practitioners in the study by Engström et al
requested a fixed position of the source code units over
time, as mentioned in Section 2.3.

5.3 Why Heatmaps?

This survey focused on discovering publications related
to visualization of software testing data with heatmaps.
The reader might ask “why heatmaps?”, why not any
other visualization technique such as a scatter plot ma-
trix, as discussed in [19]? Perhaps an adaptation of these
visualization to using implementations better suited for
the discrete nature of test results can be meaningful?

During this survey it has become obvious that any fu-
ture extension of this SLR should not limit the scope to
only heatmaps. It might also be interesting to use an
approach where researchers adapt visualizations from
other domains into the domain of software testing.

5.4 Limitations and Future Research
This survey is limited, most notably when it comes to
the number of publications reviewed (four), the number
of databases investigated (two), the number of reviewers
used (one), and also in the number of plot types consid-
ered (one).

Future research could focus on visualizations in other
fields and adapt these to software testing. It could also
be possible to stay within the field of software testing,
but focus on other types of visualizations?

Engström et al explicitly mentions that industry prac-
titioners were interested in seeing the integration of
other sources of data: not only VCS, but also the re-
quirement management systems and the defect tracking
system. Haron et al mentions that their approach could
be extended to become a suite of tools for business anal-
ysis.

A limited set of stakeholders were identified in this
study. What would happen if roles such as requirements
analysts and junior testers were considered? How would
the visualizations be different if high level mangers or
customers were considered?

This survey should be continued on the databases
mentioned in Section 3.2. Searching in only two
databases gives a first set of insights but can not be said
to represent the full field of research. Continued re-
search should also increase the structure in the SLR by
more strictly adopting the methods proposed by [13], for
example by using multiple reviewers.

5.5 Process for Introducing Visualizations
Engström et al mention Munzner’s nested model, [15],
a process for introducing visual analytics into a con-
text and describe the four design stages (DS) as follows:
DS1) The first stage is to characterize the problem and
the available data. . . DS2) to map the problem charac-
terization to an information visualization problem, e.g.
data types and operations, DS3) to design the visual
encoding and interaction, and DS4) to implement this
design with an effective algorithm. Analyzing existing
studies on how to successfully introduce visualizations
could also be part of future research.

Other survey papers in fields related to software test-
ing, perhaps system engineering, risk analysis or dash-
board design, could also have been considered.

5.6 Validity Analysis
This is a limited study, there are several threats to valid-
ity. In the coming sections we perform a validity anal-
ysis based on the guidelines proposed by Runeson and
Höst, [18].

5.6.1 Threats to Construct Validity

We remind the reader that research with good construct
validity is research where the phenomenon under study
represents what the researchers wanted to study. In

7

short: “did we study what we thought we were study-
ing?”

We were unable to identify existing surveys where
test results are visualized with heatmaps, but other sur-
veys on similar topics might have rendered this survey
redundant, or provided insightful additions. This could
have been mitigated with a broader pre-study.

The reference papers were known prior to this study,
it is possible that this SLR was over-engineered in order
to capture these two. The limited sample size indicates
the risk of a “convenience sample”. Two of the four
studies included were Swedish. The reviewer was not
supposed to know about the list of authors or affiliations
of them during the review. It is still possible, however,
that the reviewer favored Swedish researchers, a form of
researcher bias.

A review protocol was only used for last parts of the
survey, only the include/exclude decision of steps 3, 4, 5
and 6 was logged for earlier steps. A number of standard
reasons for excluding papers could have been used to
facilitate a review of the study. This could also have
been useful in a future extensions.

During the review it was made very clear to us that
the inclusion/exclusion criteria yielded very few papers.
A possible mitigation approach could have been to have
had a control step after reading the titles of the publi-
cations, in order to determine whether or not the search
terms were good enough. At this point a decision could
have been made to start over with better search terms.

Due to resource constraints only one reviewer was
used. This increases the risk for researcher bias.

There are many threats to construct validity in this
survey that are not mitigated, but the insights generated
by the survey still represent relevant, but possibly in-
complete, information.

5.6.2 Threats to Internal Validity

Studies with good internal validity can show the causal-
ity in their data, this is mostly relevant for data analysis.
In short: “can we show that A leads to B?”

No data analysis has been done on the papers of in-
terest, this means that no statistical methods have been
used and that the data is qualitative. So conclusions
drawn from this study have a risk of having researcher
bias.

5.6.3 Threats to External Validity

Studies with good external validity have results that are
valid in other contexts than the ones in which the study
was performed. In short: “can these results be used else-
where?”

The conclusions drawn in this paper might be valid
now, but future studies might add to them, or revise
them. Practitioners in the industry might have differ-
ent data sources available. Conclusions in this paper on
how practitioners could visualize test results may not be
valid for the cases where a data source recommended is
not available.

However, the findings in the included papers have
been evaluated with a total of three industrial partners
and several FLOSS projects. This makes us believe that
the external validity is good.

5.6.4 Threats to Reliability

Studies with good reliability are independent of the re-
searchers that performed them. In short: “Would other
researchers come to the same conclusion with the same
method?”

No external review of the research questions, the
search terms, or the steps used for inclusion and ex-
clusion has been conducted. These reviews are recom-
mended parts according to Kitchenham, [13]. The ac-
tual outcome of the survey steps have not been reviewed
by a second part. This further increases the risk of re-
searcher bias.

The methods and databases used in this paper are well
defined, we believe that the reliability of our results are
rather good. There is, however, a non-negligible amount
of human judgment involved in the steps used for inclu-
sion and exclusion, described in Table 1, that might have
an impact on reliability.

6 Conclusions
Visualizing tests results is hard. This survey used a
structured approach to discover state of the art in vi-
sualizing test data with heatmaps, by investigating two
electronic literature databases. We discovered that test
results heatmaps have been used to target managers, ex-
perts, testers and code maintainers. The purpose has
been to, for example, enable support in making deci-
sions. These visualizations often, but not always, rely
on the assumption that the software of the system under
test is important and that the visualization should focus
on it.

Despite limitations in this survey the knowledge sum-
marized is valid, but might be extended. The publica-
tions identified as relevant have proposed the following
future research: increase the scale of the visualizations,
improve the evaluation, make them easier to use and ex-
tend with use cases such as automatic warnings.

7 Acknowledgments
This paper was written as a part of the DVA450 course
at Mälardalen University (MDH), in the fall of 2016. It
was subject to peer review by other students, all of them
industry practitioners, in the scope of this course.

8 Author Biography
Per Erik Strandberg is a test lead at Westermo Research
and Development AB, with more than a decade of ex-
perience working with software development, software

8

testing and test automation. His research interests in-
clude large-scale software test automation of embedded
systems. Strandberg received a M.Sc. degree in bioin-
formatics, and also a M.Sc. degree in applied mathemat-
ics from Linköping University. He started as an Indus-
trial Doctoral Student at Mälardalen University in 2017.
Contact him at per.strandberg@westermo.se.

9 References
[1] D. Beyer & A. E. Hassan (2006, October). “An-

imated Visualization of Software History using
Evolution Storyboards”. In WCRE (Vol. 6, pp. 199-
210).

[2] P. Caserta and O. Zendra. “Visualization of the
static aspects of software: A survey.” In IEEE
transactions on visualization and computer graph-
ics 17.7 (2011): 913-933.

[3] F. Deissenboeck, E. Juergens, B. Hummel, S.
Wagner, B. M. y Parareda, & M. Pizka. (2008).
“Tool support for continuous quality control”. In
IEEE software. 25(5), 60-67.

[4] S. C. Eick, J. L. Steffen & E. E. Sumner. (1992).
“Seesoft-a tool for visualizing line oriented soft-
ware statistics”. In IEEE Transactions on Software
Engineering, 18(11), 957-968.

[5] J. Ekanayake, J. Tappolet, H. C. Gall & A. Bern-
stein (2009, May). “Tracking concept drift of soft-
ware projects using defect prediction quality”.
In 2009 6th IEEE International Working Confer-
ence on Mining Software Repositories (pp. 51-60).
IEEE.

[6] S. Elbaum, G. Rothermel & J. Penix. (2014,
November). “Techniques for improving regression
testing in continuous integration development en-
vironments”. In Proceedings of the 22nd ACM
SIGSOFT International Symposium on Founda-
tions of Software Engineering (pp. 235-245).
ACM.

[7] E. Engström, M. Mantylä, P. Runeson & M. Borg
(2014, March). “Supporting regression test scop-
ing with visual analytics”. In 2014 IEEE Seventh
International Conference on Software Testing, Ver-
ification and Validation (pp. 283-292). IEEE.

[8] R. Feldt, M. Staron, E. Hult & T. Liljegren (2013,
September). “Supporting software decision meet-
ings: Heatmaps for visualising test and code mea-
surements”. In 2013 39th Euromicro Conference
on Software Engineering and Advanced Applica-
tions (pp. 62-69). IEEE.

[9] M. E. Froese & M. Tory (2016). “Lessons Learned
from Designing Visualization Dashboards”. In
IEEE computer graphics and applications, 36(2),
83-89.

[10] N. H. Haron & S. M. Syed-Mohamad (2015, De-
cember). “Test and Defect Coverage Analytics
Model for the assessment of software test ade-
quacy”. In 2015 9th Malaysian Software Engineer-
ing Conference (MySEC) (pp. 13-18). IEEE.

[11] R. van Hees & J. Hage (2015, September). “Stable
Voronoi-based visualizations for software qual-
ity monitoring”. In Software Visualization (VIS-
SOFT), 2015 IEEE 3rd Working Conference on
(pp. 6-15). IEEE.

[12] J. A. Jones, M. J. Harrold, & J. Stasko, (2002).
“Visualization of test information to assist fault
localization”. In Proceedings of the 24th inter-
national conference on Software engineering (pp.
467-477). ACM.

[13] S. Keele (2007). “Guidelines for performing sys-
tematic literature reviews in software engineer-
ing”. In Technical report, Ver. 2.3 EBSE Technical
Report. EBSE.

[14] N. Nagappan, and T. Ball, (2005, May). “Use of
relative code churn measures to predict system de-
fect density”. In Proceedings. 27th International
Conference on Software Engineering, 2005. ICSE
2005. (pp. 284-292). IEEE.

[15] T. Munzner, (2009). “A nested model for visu-
alization design and validation”. In IEEE trans-
actions on visualization and computer graphics,
15(6), 921-928.

[16] A. Orso, J. Jones & M. J. Harrold, (2003).
“Visualization of program-execution data for de-
ployed software”. In Proceedings of the 2003 ACM
symposium on Software visualization (pp. 67-ff).
ACM.

[17] T. J. Ostrand, E. J. Weyuker, and R. M. Bell.
(2005). “Predicting the location and number of
faults in large software systems”. In IEEE Trans-
actions on Software Engineering, 31(4), 340-355.

[18] P. Runeson & M. Höst (2009). “Guidelines for
conducting and reporting case study research in
software engineering.” In Empirical software en-
gineering, 14(2), 131-164.

[19] M. Sedlmair, T. Munzner & M. Tory (2013). “Em-
pirical guidance on scatterplot and dimension re-
duction technique choices”. IEEE Transactions
on Visualization and Computer Graphics, 19(12),
2634-2643.

[20] M. Staron, J. Hansson, R. Feldt, A. Henriksson,
W. Meding, S. Nilsson & C. Höglund (2013, Octo-
ber). “Measuring and Visualizing Code Stability–
A Case Study at Three Companies”. In Soft-
ware Measurement and the 2013 Eighth Interna-
tional Conference on Software Process and Prod-
uct Measurement (IWSM-MENSURA), 2013 Joint

9

Conference of the 23rd International Workshop on
(pp. 191-200). IEEE.

[21] P. E. Strandberg, D. Sundmark, W. Afzal, T. J. Os-
trand & E. J. Weyuker (2016, October). “Experi-
ence Report: Automated System Level Regression
Test Prioritization using multiple factors”, in Pro-
ceedings of the International Symposium on Soft-
ware Reliability Engineering (ISSRE), 2016.

[22] C. Wohlin (2014, May). “Guidelines for snow-
balling in systematic literature studies and a repli-
cation in software engineering”. In Proceedings of
the 18th International Conference on Evaluation
and Assessment in Software Engineering (p. 38).
ACM.

[23] A. Zeileis, K. Hornik, & P. Murrell. (2009). “Es-
caping RGBland: selecting colors for statistical
graphics”. In Computational Statistics & Data
Analysis, 53(9), 3259-3270.

[24] Color blindness. In Wikipedia, The Free Encyclo-
pedia. Retrieved November 1, 2016.

[25] Heat map. In Wikipedia, The Free Encyclopedia.
Retrieved November 1, 2016.

[26] Ishihara test. In Wikipedia, The Free Encyclopedia.
Retrieved November 1, 2016.

A Appendix: Review Protocols

A.1 Included Papers
A.1.1 Visualization of Program-Execution. . .

Reference Orso et al, 2003, [16]

Affiliation Georgia Institute of Technology

Focus or Research Question Collect, transform and
visualize program execution data. Transform it so
it can be understood.

Data sources VCS, code execution data

Stakeholder Code maintainer (?)

What is Visualized? Three levels: statement, file and
system level. In each one color hue an brightness
is used to visualize the attention needed and the rel-
evance or a line of code or a component.

How is this valuable? Find issues that occur in pro-
duction (strange OS combined with strange Java
distribution).

Environment/Evaluation evaluated with FLOSS
projects.

Other Comments This paper was included since it ex-
plicitly mentioned that a “. . . system to visualize
test-case information for fault localization. . . could
be a specific instance of the approach described in
this paper. . . ”

A.1.2 Supporting software decision meetings. . .

Reference Feldt et al, 2013, [8]

Affiliation University of Göteborg.

Focus or Research Question Identify early warning
indicators about potential problems with unex-
pected cost.

Data sources VCS target SW. VCS test system. Test
outcomes.

Stakeholder Project manager, technical leader, test
leader

What is Visualized? code churn over time, and test fail
over time.

How is this valuable? Early warning. Suggest area for
improvement.

Environment/Evaluation One company.

Other Comments This is one of the two reference pa-
pers.

A.1.3 Supporting regression test scoping. . .

Reference Engström et al, 2014, [7]

Affiliation Lund University, Aalto University

Focus or Research Question How design visualiza-
tion to support regression test scoping?

Data sources Test coverage items vs historical test
data.

Stakeholder Test manager, test experts, managers,
testers

What is Visualized? Test coverage items vs historical
test data (pass/fail per components)

How is this valuable? Support test planning, decision
support.

Environment/Evaluation 2 industry partners as well
as a FLOSS project.

Other Comments First two words in abstract are “test
managers”. Participants suggested also including
data from VCS, requirements management systems
as well as issue trackers. This is one of the two
reference papers.

A.1.4 Test and Defect Coverage Analytics. . .

Reference Haron and Syed-Mohamad, 2015, [10]

Affiliation Universiti Sains Malaysia

Focus or Research Question How integrate test cov-
erage and defect coverage.

Data sources Test coverage, defect coverage.

10

https://en.wikipedia.org/wiki/Color_blindness
http://en.wikipedia.org/wiki/Heat_map
https://en.wikipedia.org/wiki/Ishihara_test

Stakeholder Test managers, project managers.

What is Visualized? Coverage vs defects vs number of
SLOC, as an ID plugin.

How is this valuable? Make decisions on software test
adequacy

Environment/Evaluation evaluated with FLOSS
projects.

Other Comments Feels like an “initial study”. No in-
dustrial connection.

A.2 Excluded Papers
For completeness the following sections contain the re-
view protocols from the eight papers that were excluded
in step 7, see Table 1.

A.2.1 Animated Visualization of Software. . .

Reference [1]

Year 2006

Affiliation EPFL Switzerland, University of Victoria

Focus or Research Question Visualize good and bad
code quality over time

Data sources VCS Data

Stakeholder Unclear, but senior developers and system
experts are explicitly mentioned in other contexts.

What is Visualized? Code component dependencies.

How is this valuable? Study and understand large
code bases. Capture the informal knowledge. Use-
ful when refactoring or rearchitecting.

Environment Evaluated with three FLOSS projects.

Other Comments Does not include test results data.

A.2.2 Tracking concept drift of software. . .

Reference [5]

Year 2009

Affiliation University of Zurich

Focus or Research Question Extend defect prediction
with “concept drift”.

Data sources VCS and issue tracker data.

Stakeholder Project Managers.

What is Visualized? Quality of the prediction of
faults.

How is this valuable? Better quality of the predic-
tions.

Environment Evaluated with four FLOSS projects.

Other Comments By “concept” they mean the bug
generation processes. These change over time as
for example authors come and go.

A.2.3 Empirical guidance on scatterplot. . .

Reference [19]

Year 2013

Affiliation University of Vienna, University of Brittish
Columbia, University of Victoria

Focus or Research Question Data study.

Data sources More than 75 data sets.

Stakeholder Data analyst

What is Visualized? “any data”

How is this valuable? The methods are key in this pa-
per.

Environment Not applicable.

Other Comments Few developers looked at many data
visualizations and ranked them based on separation
of data types. This is a very interesting paper for
future work on visualizations, but this is not spe-
cific to the domain of software testing.

A.2.4 Measuring and Visualizing Code Stability. . .

Reference [20]

Year 2013

Affiliation University of Göteborg, Chalmers (another
University in Göteborg), Volvo AB, Ericsson AB,
Saab AB.

Focus or Research Question Monitor stability of soft-
ware components, by monitoring changes in source
code.

Data sources VCS data.

Stakeholder architect, process experts, designers, inte-
gration specialists

What is Visualized? code churn per component over
time.

How is this valuable? Quality metric

Environment Three companies

Other Comments Does not include test results data.

11

A.2.5 Stable Voronoi-based visualizations. . .

Reference [11]

Year 2015

Affiliation Utrecht University

Focus or Research Question Stabilize a special form
of source code visualization with respect to spatial
stability over time.

Data sources VCS data.

Stakeholder Unclear.

What is Visualized? Source code: packages, files, . . .

How is this valuable? Make it possible to compare a
code base in different points in time.

Environment Evaluated with FLOSS projects.

Other Comments Does not include test results data.

A.2.6 Lessons Learned from. . . Dashboards

Reference [9]

Year 2016

Affiliation University of Victoria, Tableau Research

Focus or Research Question Lessons learned from
making visualization dashboards.

Data sources Many

Stakeholder Middle to high level executives.

What is Visualized? Many things. Typically different
KPIs per component.

How is this valuable? Make decisions

Environment Small start-up companies and institutes

Other Comments The user stories mentioned in the
paper might be relevant for future work on visu-
alizations, but this is not specific to the domain of
software testing.

12

	Introduction
	Related Work
	Visualization of Source Code
	Software Fault Prediction
	Software Evolution
	Dashboard Visualization
	Color blindness, Ishihara, and Usability
	Two Reference Papers
	Test Results Visualization Surveys

	Survey Method
	Planning the Survey
	Conducting the Survey
	Notable Events during the Survey

	Results
	Overview
	Answers to Research Questions

	Discussion
	Publications not included
	Visualization of Source Code
	Why Heatmaps?
	Limitations and Future Research
	Process for Introducing Visualizations
	Validity Analysis
	Threats to Construct Validity
	Threats to Internal Validity
	Threats to External Validity
	Threats to Reliability

	Conclusions
	Acknowledgments
	Author Biography
	References
	Appendix: Review Protocols
	Included Papers
	Visualization of Program-Execution…
	Supporting software decision meetings…
	Supporting regression test scoping…
	Test and Defect Coverage Analytics…

	Excluded Papers
	Animated Visualization of Software…
	Tracking concept drift of software…
	Empirical guidance on scatterplot…
	Measuring and Visualizing Code Stability…
	Stable Voronoi-based visualizations…
	Lessons Learned from… Dashboards

