
Intermittently Failing Tests in the Embedded Systems Domain

P. E. Strandberg1,2, T. J. Ostrand2, E. J. Weyuker2,3, W. Afzal2, and D. Sundmark2

1Westermo Network Technologies AB, Västerås, Sweden
2Mälardalen University, Västerås, Sweden

3University of Central Florida, Orlando, USA

Accepted to the ACM SIGSOFT International Symposium on Software Testing and Analysis (ISSTA), 2020.

Abstract
Software testing is sometimes plagued with intermittently
failing tests and finding the root causes of such failing tests
is often difficult. This problem has been widely studied at the
unit testing level for open source software, but there has been
far less investigation at the system test level, particularly the
testing of industrial embedded systems. This paper describes
our investigation of the root causes of intermittently failing
tests in the embedded systems domain, with the goal of bet-
ter understanding, explaining and categorizing the underlying
faults. The subject of our investigation is a currently-running
industrial embedded system, along with the system level test-
ing that was performed. We devised and used a novel met-
ric for classifying test cases as intermittent. From more than
a half million test verdicts, we identified intermittently and
consistently failing tests, and identified their root causes using
multiple sources. We found that about 1-3% of all test cases
were intermittently failing. From analysis of the case study
results and related work, we identified nine factors associated
with test case intermittence. We found that a fix for a consis-
tently failing test typically removed a larger number of fail-
ures detected by other tests than a fix for an intermittent test.
We also found that more effort was usually needed to identify
fixes for intermittent tests than for consistent tests. An over-
lap between root causes leading to intermittent and consistent
tests was identified. Many root causes of intermittence are the
same in industrial embedded systems and open source soft-
ware. However, when comparing unit testing to system level
testing, especially for embedded systems, we observed that
the test environment itself is often the cause of intermittence.

Keywords: system level test automation, embedded systems,
flaky tests, intermittently failing tests, non-deterministic tests

1 Introduction
The software in embedded systems has to be tested under real-
istic conditions, using real hardware [8,47]. Even when using
continuous practices, such as nightly testing, system testing is
a resource constrained process when compared to unit level

testing, and there is typically not enough time to execute all
test cases every night on all hardware versions [31,41]. If test
cases fail intermittently in nightly testing, troubleshooting is
often very costly and reproduction of failures very difficult,
leading staff to distrust test results [29].

Intermittently failing hardware devices have been stud-
ied for at least 70 years [12]. As software-based func-
tionality has become increasingly important in large sys-
tems, non-deterministic results have continued to be a prob-
lem [7, 28, 30]. With improved automation and continuous
integration, the volume of test results exacerbates the prob-
lem [36, 39]. This problem has been studied in related work
as described in Section 2, focusing primarily on unit testing
level of open source software. The conclusion has generally
been that test cases of poor quality fail unpredictably, even
when testing the same software, and that the test cases are
to blame for intermittent failures [29, 45]. This paper contin-
ues this research, but focuses on industrial embedded systems
being developed and tested at the system level with evolving
software and testware. In this type of environment we hypoth-
esize that intermittently failing tests may have root causes that
can stem from the testware, hardware, software, or their inter-
faces.

The research objectives of this paper are to identify in-
termittently failing tests during system level testing by using
an easily computed measure of the frequency of change of
test verdict. Additionally we want to find, explain and cate-
gorize the root causes of such failures in the context of de-
velopment and maintenance of industrial embedded systems
designed by using continuous integration, and to compare our
findings with similar research to build knowledge in the topic.

The main contributions of this paper are:

1. Nine factors that may lead to intermittently failing tests
for system level testing of an embedded system: test case
assumptions, complexity of testing, software or hard-
ware faults, test case dependencies, resource leaks, net-
work issues, random number issues, test system issues,
and code maintenance.

2. Definition of a metric that can identify intermittently fail-
ing tests, and can measure the frequency of intermittence
over the test base of a system.
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3. Evidence that failures detected by intermittently failing
tests often require more work to find their root cause than
those detected by consistently failing tests. This may
lead testers to give up without identifying the failure’s
root cause, and to rely on the hope that failures will oc-
cur infrequently enough that they can be ignored.

4. Experience that a fix for a consistently failing test often
repairs a larger number of failures found by other test
cases than a fix of an intermittently failing test.

The paper is organized as follows. Section 2.1 presents ter-
minology. Section 2.2 describes two real cases of intermittent
tests that motivate our research. Section 2.3 introduces a novel
metric for measuring intermittence, which is then used to an-
alyze data collected in the case study presented in Section 3.
Section 4 presents the results of the case study, and Section 5
shows how our results differ from, confirm, and extend pre-
vious work. Sections 6 and 7 discuss our findings and our
conclusions.

2 Intermittently Failing Tests

2.1 Terminology
In addition to the obvious hardware (HW) and software (SW)
that comprise an embedded system (ES), development and
testing also involve testware (TW), which itself has both soft-
ware and hardware components. The TW software includes
items such as test harnesses and stubs, servers, test libraries,
test scripts, automated test cases and code to control the au-
tomation. TW hardware is the physical environment on which
test cases are executed, including servers, cables, and periph-
eral equipment such as load generators.

The hoped-for result of running a regression test suite is
that all tests in the suite will be successful, thus confirming
that recent modifications to the system have not broken any
existing functionality or property. With continuous integra-
tion (CI) methods, changes may occur at any time, and regres-
sion testing may be carried out daily, or even more frequently,
to assure that recent changes have not adversely affected the
system’s behavior.

During the development and maintenance of a large indus-
trial embedded system, we have observed many examples of
test cases that produce different verdicts in successive regres-
sion testing runs, with sequences of mixed verdicts. Such re-
sults occur even for test cases that have no apparent connec-
tion to system modifications that were made since the previ-
ous test run.

Flaky tests are tests that yield differing verdicts when noth-
ing in the SW, HW or TW have been changed [29]. The dif-
ferent verdicts occur because of hidden changes in the system
state or the application’s environment. State changes can be
caused by previously run test cases or by normal operation of
the system. Environment changes can occur spontaneously,
and cause problems when system designers have failed to
consider the possibility of their occurrence. Tests can also

be flaky because of poor design. These are sometimes called
smelly tests [18, 21].

In many industrial contexts, including the one that is the
subject of this case study, it is not useful to look for flaky tests,
due to frequent changes made in the underlying SW, HW and
TW in a CI development paradigm. Since the perceived busi-
ness value of retesting is limited when nothing has changed,
we cannot expect to see much repeated testing on unchanged
SW, TW and HW. Thus, although potentially flaky tests may
exist, they are rarely observed and in fact represent a lack of
understanding of all of the factors that might impact system
behavior. Bell et al. [9] developed a tool to detect flaky tests
without retesting that relies on instrumentation (code cover-
age), but this may be hard or impossible to use for CI, or for
testing SW in resource constrained embedded systems [15].

For these reasons, we define an intermittently failing test to
be a test case that has been executed repeatedly while there is
a potential evolution in SW, HW or TW, and where the ver-
dict changes over time. Note that both flaky and intermittently
failing tests refer to the dynamic execution of test cases, and
require that the system be executed at least twice before we
can label them as such. Furthermore, in automated system
level testing of ES, intermittently failing tests are different
from flaky tests in that they allow changes in the SW or HW
of the ES under test, as well as in the TW used for testing.

A reader might object to our definition and argue that when
changing an ES one should not be surprised that verdicts from
test cases change as a result. Although this is of course a
relevant comment, in this paper we do not distinguish between
expected and unexpected intermittently failing tests – we are
interested in these tests regardless of root cause. A reader
might also object to test cases being “the same” test cases,
if the underlying test script code has been modified. This is
also a relevant comment, and as we will see in Section 5, code
maintenance is indeed a factor that impacts intermittence, but
not a dominating factor.

2.2 Two Examples
2.2.1 Example 1: A Smelly, Flaky and Intermittently

Failing Test

One test case at the company targets the temperature sensor
that measures the internal temperature of the HW, and reports
the value to other software. If the SW receives a plausible
value, the test case assumes that the sensor is working prop-
erly.

The test was designed around the assumption that the am-
bient temperature would be between 20 and 40°C with an ac-
ceptable internal temperature between 21 and 60°C. This as-
sumption was valid for several years and the test hardly ever
failed. However, at one time the test lab was moved to a dif-
ferent location, and the test started to fail intermittently on
one of the test systems. The new test lab had much better
air conditioning, with one particular test system placed very
close to one of the air conditioners. If HW in this test system
had been powered off for some time, allowing it to cool down,
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Figure 1: We model the test cases as Markov chains. The test case has some unknown transition probabilities, shown in matrix M. Counts
of the 7 observed transitions in a window of length 8 are in matrix N, and the observed intermittence is computed with the q-score. Details
described in Section 2.3.

and if the temperature sensor test was early in the test suite,
prior to when the HW had heated up, then the test would fail
because the internal temperature reported by the sensor was
outside the plausible range. Since these two conditions rarely
occurred simultaneously, the failure was rarely observed. Af-
ter a discussion with HW engineers, the plausible range was
changed to 15 to 50°C, and the test stopped failing.

One could argue that this test case was smelly, because of
the false underlying assumption of what an acceptable tem-
perature range would be. The test case was also intermittently
failing. However, in order to truly be able to label the test
as flaky, we would have to investigate whether or not the test
case had been executed at least twice with the same SW, HW
and TW combination while also producing different verdicts.

The temperature sensor test shows an almost trivial exam-
ple of a fix, but it still illustrates the effort needed in identi-
fying and dealing with intermittently failing tests: first, test
results have to be observed, discussed and understood. Then
an informed fix has to be applied – a prerequisite for this par-
ticular fix was a discussion across roles (test engineer and HW
engineer). Once the fix is applied, the test results have to be
observed again for some time, to see that the issue has been
properly addressed and there are no more failures.

This example also illustrates that “the system state” when
testing an ES at system level can be very complex: the state
contains not only all variables of the Linux kernel, the many
physical components and possible flaws in soldering of the
device, the test scripts and the order in which test cases are
executed. In this particular example, the system state also
includes room temperature, and the internal temperature of
the devices. These parameters were not fully considered when
the test script was first written. Sometimes, we cannot observe
or control all variables in the system state, because we do not
even know all of the factors that might impact the system’s
behavior.

2.2.2 Example 2: Resource Leak in SW

Another example further illustrates the complexity of auto-
mated testing of ES at the system level. In one of the features
in the SW under study, there was a bug in the form of a re-
source leak. This feature was exercised by several test cases
that could all trigger the leak. But in order to observe the bug,

a certain number of the test cases had to be executed for the
resource to be depleted. At the company, there is a regression
test selection system in place that generates new test suites
every night, and one of the factors that leads to an increased
priority of a test case is that it has failed recently [37, 41].
Time for testing is a scarce resource, and testing terminates
once time has run out, potentially leaving test cases that are
late in the suite unexecuted. Therefore, if a certain test case
passed recently, it might have a relatively low priority and not
be executed at all during nightly testing. But if the test case
did fail, thereby identifying the bug, it would be prioritized
and placed early in the suite. However, in the beginning of the
suite it was unlikely that the leak had been triggered enough
for the test to fail. In retrospect, we know that the leak was
consistent, but because test suites changed over time, we did
not consistently trigger the SW bug. We thus observed an in-
termittently failing test case where we could have observed
a consistently failing test case if the suites had been identi-
cal over time. This is a very common issue when there are
resource leakages, and one of the reasons that these sorts of
faults are so difficult to find and fix properly. Essentially, the
leakage will only occur over a long period of time or when
an unusual surge in workload has occurred. If nightly testing
begins in a standard or quiescent state, it might be that the
failure is observed very rarely and only when a particular test
case order occurs.

2.3 A Model for Intermittently Failing Tests
We want to define a property of test cases that captures the
likelihood of a test failing intermittently, regardless of reason.
To model the sequence of varying test case results, we use the
concept of a Markov chain [34], which is a process with well-
defined states, and probabilities for transitions from one state
to another that depend only on the current state and input.
When run, test cases may result in one of three verdicts: pass,
fail or invalid, where invalid means that the execution could
not be completed. This is typically triggered by unexpected
behavior in the HW, SW or TW, followed by an unhandled
exception in the TW. We can think of the test case verdicts
(pass, fail, invalid) as being states in a Markov chain (illus-
trated in Figure 1a), and each execution of the test case as a
transition. When a test verdict is different from the previous
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one, the transition is to a different state; a repeated verdict is
represented by a transition to the same state. Each test case
has some unknown probabilities for the transitions, as shown
in a transition matrix M (see Fig. 1b). The probabilities may
change over time because of changes in the SW, TW, and HW,
and in practice we do not know what they are.

Based on historic data, we can observe the actual ver-
dicts that have been produced (Fig. 1c). By counting tran-
sitions that occur in a sequence of consecutive test case ex-
ecutions, we construct the matrix N , in which each element
represents the number of observed transitions from state to
state (Fig. 1d). While the elements mi,j of M are the un-
known probabilities of going from i to j, the ni,j are the
number of observed transitions from i to j, and are depen-
dent on the sequence of test cases actually run. For exam-
ple, np,f is the number of observed transitions from pass to
fail, corresponding to the number of times that a pass ver-
dict is immediately followed by a fail verdict. The diagonal
elements of N represent how often the test case verdict has
remained the same, and the off-diagonal elements represent
how often the test case verdict has changed, i.e., how often
the Markov chain changes state. We now define the q-score
as the fraction of results in which the test case changes state,
i.e. q = 1− diag(N)/sum(N), (Fig. 1e).

The q-score is a direct measure of the variability of a test
case’s verdicts. We have found it to be most useful when con-
tinuously measured over a moving window of approximately
8-15 consecutive verdicts of a test case. A running plot of
the score shows the varying intermittence over time of the
test case, and shows whether the intermittence is increasing
or decreasing. Measurement over long periods such as sev-
eral months can be used to identify test cases that have in-
termittency somewhere in their history, but is not useful for
determining their most recent status.

Figure 1 illustrates a window size of eight, giving seven
observed transitions. The test case remains in the same state
three times (one pass → pass, two fail → fail) and changes
state four times, indicating that the test case is more likely to
change verdict than to retain the verdict. The computed q-
score for this window is 0.57. Given a threshold value of the
q-score, one could now use this metric as a method for de-
tecting intermittently failing tests. We can also compare the
observed intermittence of test cases, e.g., a test with a q-score
of 0.57 could be thought of as more intermittent than a test
case with a q-score of 0.15. Thus rather than simply deciding
that a test case is either intermittently failing or not, much as
the literature on flaky tests has done, we can instead use the
q-score as a way of deciding which tests are most problematic
because of their changing behavior. Of course, it may be that
test cases exhibit a high q-score for totally expected reasons
such as when the SW or test scripts are being refactored, or
undergoing code maintenance or when the HW is being re-
placed. One could therefore consider combining the q-score
with other metrics, such as code churn.

It is also useful to introduce a metric for how frequently
a test case passes. We define the p-score as the fraction of

passed verdicts in a window of observed verdicts. Using the
same example as above (Figure 1), p = 3/8 = 0.375, indicat-
ing that this test case passed in 37.5% of the executions.

Both the windowed p-score and q-score will be used to se-
lect test cases of interest from a large pool of possible test
cases in the coming sections. We will also use the overall
scores from all verdicts for each test case to describe the in-
termittence of test cases on a population level.

As we will demonstrate in our case study, different q-score
thresholds and window sizes will select different test cases as
potentially problematic. The q-score’s range of values from 0
to 1 provides the system tester a more precise means of setting
the degree of variability to indicate which test case results are
most urgent to investigate, in contrast to a binary metric such
as flaky tests.

3 Case Study Design
This section describes the research questions, the case, and the
industrial context, as well as data collection, and data analy-
sis procedures. The overall research flow is illustrated in Fig-
ure 2.

Our goal is to explore and explain the root causes of inter-
mittently failing tests observed during system level testing in
the development and maintenance of embedded systems de-
veloped using continuous integration in an industrial environ-
ment. We will compare these test cases with those that con-
sistently cause failures. We formulate two research questions
(RQs):

• RQ1: What are the root causes of intermittently failing
tests when testing embedded systems on a system level?

• RQ2: Are the root causes different for tests that fail con-
sistently?

3.1 Case and Subject Selection
The case in this study is nine months of test results from
nightly testing of an operating system for embedded systems.
We analyze the case using four units of analysis: two groups
of intermittently failing tests, and two groups of consistently
failing tests. This study could thus be defined as an embed-
ded exploratory and explanatory case study with four units of
analysis [35].

3.1.1 Industrial Context

Recent research literature on flaky tests has typically focused
on unit testing of open source projects targeting a general-
purpose computer (not ES). To broaden our understanding of
intermittently failing tests in industrial systems, the case study
is conducted at Westermo Network Technologies AB an in-
ternational company with about 250 employees targeting the
on-board rail, track-side rail, power distribution, and other in-
dustrial automation domains where communication networks
in harsh environments are needed. The company develops
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Figure 2: Using several sources of information, we collected information on root causes and fixes for intermittently failing tests. With
related work we created a list of relevant factors.

Table 1: Number of consecutive nights of testing with the same SW,
TW, or both.

Nights w. same Min Max Avg. Med. Std.d.
SW Code 1 107 5.72 2.5 13.97
TW Code 1 28 3.02 1.0 3.96
SW and TW Code 1 17 2.32 1.0 2.68

switches and routers (the HW) running an operating system
(the SW), which is developed in-house in an agile develop-
ment process based on Kanban where new features are devel-
oped in separate code branches. The company has invested
heavily in test automation. The testware (TW) includes an
internal infrastructure for nightly testing, equipment such as
test servers and devices under test with a combined weight
of more than a ton, and a test framework with hundreds of
test scripts, to which new ones are added weekly. Several
person-years of effort have been invested in coding and con-
struction of the TW. SW development takes place in feature
branches that are expected to receive many code changes, and
once a feature is implemented and stabilized, it is merged into
a master branch.

To get an understanding of how frequently the same SW
is tested on consecutive nights (if at all), we analyzed how
many nights in a row the same SW, the same TW, and both
the same SW and TW are used. The median number of nights
of regression testing with the same revision of the SW was 2.5
in the branch we investigated. The corresponding number for
TW was only 1 (see details in Table 1). In addition to code
changes, there are many variables in the TW that are hard to
observe, log, or control: network latency, room temperature
where devices operate, states in test servers, etc. When testing
an embedded system at the system level, running only a subset
of the regression test suite may be necessary, because testing
takes far more time at the system level than testing done at the
unit level. Selecting a subset will typically lead to test cases
being reordered in the test suites [37, 41], which may trigger
intermittent failures if there are test case dependencies.

The software quality process at the company includes sev-
eral types of testing techniques in addition to automated re-
gression testing (such as manual risk-based testing, robustness

testing, etc.), as well as bug tracking, bug triage meetings, test
results sync meetings, and release gate meetings, before a new
version of the SW is made available to customers.

3.2 Data Collection Procedures
3.2.1 Raw Data

After discussions with Westermo, we extracted verdicts from
270 consecutive nights of testing of a stable code branch.
This branch has existed for a long time, so we expected to
see mostly passing tests. By using a stable code branch, the
impact of changes in SW should be minimized, in contrast
to a feature branch that is short-lived and has frequent SW
changes. In such a case we would expect many failing tests.
The extracted data contains 532069 verdicts from 5212 test
cases. In this study, we consider a test case to be a combi-
nation of one of the 13 test systems, 527 test scripts, and 69
different parameter settings in the raw data. Note that if the
same script is run on two different systems, we count it as two
different test cases.

Each individual test case ran at most once each night, so
had between 1 and 270 verdicts during this period. One test
case is hard coded into the beginning of the scripts, so it ran
every night. The average was 102.1 verdicts with a median of
96 and standard deviation of 40.3. This means that each night
about a third of all test cases were included in nightly testing
of this branch, with the particular test cases selected varying
from night to night.

Of the 532069 verdicts, 526335 (98.9%) were pass, 2673
(0.5%) were fail, and 3061 (0.6%) invalid. For this study, we
are not concerned with the impact of the failed and invalid
verdicts, so there is no severity associated with the non-pass
verdicts.

We removed the seven test cases that had only been exe-
cuted once during the 270 night period. Based on the com-
plete sequence of verdicts for each remaining test case, we
found that the tests have an average p-score of 0.986 and
an average q-score of 0.011. This means that the test cases
could be thought of as having an overall probability of 1.1%
to change verdict in this data set. The maximum q-score of
0.68 means that at least one or a few test cases were more
likely to change verdict than to retain a verdict. The median
p-score of 1.0 and q-score of 0.0 indicates that almost all test
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Table 2: Minimum, maximum, average, median and standard devi-
ation of the q-scores and p-scores of all 5205 test cases that were
executed more than once.

Score Min Max Avg. Med. Std.d.
p-score 0.0 1.00 0.986 1.0 0.060
q-score 0.0 0.68 0.011 0.0 0.037

5212 test cases
A13 A6 B13 B6

non-pass fixes
n=51

intermittent consistent
n=165 n=50 n=49

Figure 3: From all test cases we identified intermittent and consis-
tent tests, and analyzed their fixes.

cases never fail, and never change verdict. 24.8% of the test
cases had a non-zero q-score. See details in Table 2.

3.2.2 Categorizing Intermittently and Consistently Fail-
ing Tests

Our goal is to identify and study fixes such that we can deter-
mine the root causes of intermittently and consistently failing
tests. From the 5212 tests in the database, we identified the
following two groups of tests:

• Group A: test cases that at some point in time intermit-
tently failed (i.e. had a high q-score), but after fixes were
made, then mostly passed (i.e. had a high p-score).

• Group B: test cases that at some point in time failed con-
sistently (i.e. had a low p-score and also low q-score),
but after changes were made, they mostly passed (i.e.
had a high p-score).

To study changes in q-score and p-score over time we use
moving windows of verdicts, as illustrated in Figure 1. By
using a small window we hope to capture rapid changes in
q-score, and with a larger window we hope to capture slower
trends. In general, we want the A and B groups to contain
enough test cases to permit meaningful analysis, while not
too many to be overwhelming. We generated many samples
of the A and B groups, using window sizes ranging from 5
to 30 and different cut-off values of p and q. In the end, we
used two window sizes for a total of four groups – groups A6
and B6 used a window size of 6 verdicts, while A13 and B13
used 13 verdicts. For all four groups we required that they
ended up mostly passing, with a final p-score of at least of
0.96. For group A13, we required a q-score of at least 0.35
at some point in time, and for A6, we required a q-score of
at least 0.5. For B6 and B13, we required the p-score to go
below 0.2 at some point in time. With these window sizes and
thresholds, we got a total of 230 test cases in the four groups.

To summarize, for inclusion in A, a test case must: (i) at
some point, have had a floating q-score over a certain limit

(0.5 for A6, and 0.35 for A13) and (ii) the final floating p-
score must end above a certain limit (0.96 for both A6 and
A13). These are thus test cases that have been intermittently
failing, but end up passing (examples are visualized in Fig-
ures 4a and 4b). For inclusion in B, a test case must: (i) not
be in A1, (ii) at some point have had a p-score below a certain
limit (0.2 for both B6 and B13), and (iii) the final floating p-
score must end above another p-score limit (0.96 for both B6
and B13). In other words, these are test cases that have been
mostly failing for a period, but that end up passing (an exam-
ple is visualized in Fig. 4c). This resulted in a total of 230
test cases, with 165 test cases in A6, 51 in A13, 49 in B6 and
50 in B13. Figure 3 shows the large overlap between the test
groups, as 49 of the 51 tests in group A13 were also present
in A6, 34 of the 49 tests in B6 were also present in B13, and
two of the test cases were in both A6 and B13. No test case
was in three or four groups.

3.3 Analysis Procedure

The 230 test cases of interest were analyzed. Typically this
investigation required more than one source of information
and involved inspection of test and project artifacts, or visu-
alizations thereof. The tools used were: (i) A visualization
of the verdicts from the test case, as illustrated in Figure 4.
(ii) A second type of visualization, this one heatmap-like, that
uses test results from before or after the date range we inves-
tigated. These plots can quickly determine whether the test
case is still under investigation, i.e., if a test case was fail-
ing in a later phase and no obvious fix has been found, then
it was assumed that it was still under investigation. Exam-
ple visualizations of the heatmap plot used can be found in
Figure 10 in [38]. In addition to these visualizations, (iii) the
SQL-interface to the test results database was also used for an-
swering non-standard queries, such as at what time a certain
piece of HW was replaced in a test system. Log files from (iv)
the test framework, as well as test framework communication
logs with (v) devices under test and (vi) peripheral equipment
such as load generators in the test systems were manually in-
spected for error messages or other issues. Project artifacts in
(vii) issue trackers and (viii) planning tools were also used, as
well as (ix) historic hand written notes from developer-tester
sync meetings from the time range of investigation. In some
cases, the source code repository logs of (x) the test frame-
work code or (xi) SW code were investigated. In addition to
these tools, scripts and artifacts, we also used (xii) personal
experience of Westermo staff (including the first author).

For each of the 230 test cases, observations were hand-
written on paper, resulting in 34 pages by the end of the study.
An anonymized summary was written in an on-line spread-
sheet for simplified collaboration between authors. For each
test case we made notes on tools used, fix identified or root
cause. A typical example of the written notes is:

1For inclusion in B, we applied the criteria of not being in A for a given
window size, e.g. we allowed inclusion of a test case in both A6 and B13, but
not in A6 and B6.
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Figure 4: Verdicts over time from three test cases, as well as q-score (dashed) and p-score (dotted) for window size 6 and 13.

• Tools used: test framework log file, heatmap, test frame-
work source code changes.

• Fix: Revert of code change that applied the system con-
figuration in incomplete steps, instead of a complete and
correct configuration.

• Root Cause: Code change in test script that applies an
intermediate (broken) configuration involving three fea-
tures.

When all 230 test cases had been analyzed, we grouped the
fixes or root causes into categories and subcategories (sum-
marized in Table 3 and discussed in Section 4).

4 Case Study Results

4.1 Fixes and Root Causes (RQ1)
We identified five main categories of root causes: (i) Changed
HW allocation for testing, (ii) test case assumptions, (iii) test
system issues, (iv) SW or HW Faults, and (v) code mainte-
nance of TW code. In the analysis, we also identified test
cases still under investigation, test cases that had more than
one fix or root cause, and test cases for which we were unable
to identify a fix or root cause. Table 3 summarizes these cate-
gories. In the following paragraphs, we discuss each category
in detail.

Hardware Resource Allocation: Seven fixes involved
modifications of the HW allocation. This means testing with
a different subset of the available physical devices, but with
the same test script on the same test system (the HW selec-
tion algorithm is presented in [40]). Five of the fixes involved
avoiding a link breaker that was used incorrectly (or not at
all) by the test, but that could still interfere with traffic. One
test script required a port with nothing on the other end, and
another required traffic to flow through the back plane of the
device in ways not adhered to. In total, the seven fixes stabi-
lized nine combinations of test script, parameter settings, and
test system.

Test Case Assumptions: Nine fixes repaired incorrect as-
sumptions about the test framework and test systems, partic-

ularly assumptions involving timing (5 of 9). In addition to
changed intervals or tolerances on timing, one test script re-
quired a modified temperature range (as mentioned in Sec-
tion 2.2.1). One fix involved a search for an event in the latest
logged events in a log file in the HW, but due to other activities
using the same log file, the test script had to expand the search
to a larger portion of the file. Another test script assumed that
exactly one instance of a unique type of HW was present in
the test system, and could fail if more than one was present.
Yet another fix was to update the TW code that generates traf-
fic. The final fix in this category solved assumptions on the
versions of a third party library used by the test framework.
In total, the 9 fixes stabilized 31 combinations of test script,
parameter settings, and test system.

Test System Issues: Eleven fixes were modifications to the
test systems: four of these involved replacing devices.2 Two
were fixed by rebooting a server when junk characters were
sometimes written in the console used between the TW and
the HW. In the test systems at Westermo, relays are used to
power on and off devices. Two of the fixes in A6 and A13
were related to worn out relays that had to be replaced (newer
test systems use solid state relays to avoid this problem). One
fix was to complete the configuration of an FTP server that
had not been finalized on a new test system. Another fix was
to insert USB-sticks that were assumed to be present in the
HW, but had been forgotten, lost or broken. Finally, one fix
was related to a communication protocol that requires a li-
cense, but after replacing HW in the test system, the license
was no longer valid. In total, the 11 fixes stabilized 18 com-
binations of test script, parameter settings, and test system.

SW or HW Faults: 16 root causes were related to faults in
the SW or HW. Nine had a root cause in timing issues in the
SW leading to intermittent failures, and seven were related
to intermittent failures due to root causes in SW making a
port in the HW temporarily unusable and thereby blocking
traffic. None of the SW or HW faults led to consistent failures
– apparently, any such fault had already been taken care of in

2When developing new HW products, Westermo runs prototypes in
nightly testing to verify SW-HW integration. Over time, one test system
might use several generations of prototypes, as well as released HW prod-
ucts.
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Table 3: Distinct categories of fixes. E.g., there was a total of 5
distinct test cases with HW allocation of linkbreaker as root cause, 4
of which were in A6, 4 were in A13 and 1 in B6.

Root Cause/Fix A6 A13 B6 B13 Tot.
HW Allocation 4 4 3 0 7
- link breaker 4 4 1 0 5
- switch core 0 0 1 0 1
- empty port 0 0 1 0 1

TC Assumptions 7 3 2 1 9
- timing 5 2 0 0 5
- test system layout 1 1 0 0 1
- temperature 1 0 0 0 1
- log file 0 0 1 0 1
- lib. version 0 0 1 1 1

Test System Issues 9 6 2 2 11
- replace device 4 3 0 0 4
- console junk 2 1 0 0 2
- I/O relay 2 2 0 0 2
- USB sticks 1 0 0 1 1
- FTP server 0 0 1 1 1
- license 0 0 1 0 1

SW or HW Faults 16 2 0 0 16
- SW impact on HW 7 1 0 0 7
- SW timing 9 1 0 0 9

Code Maintenance 9 0 2 3 12
- unclear 7 0 0 1 8
- broken renaming 1 0 1 1 2
- traffic generator 1 0 0 0 1
- forgotten patch 0 0 1 1 1

Multiple Root Causes 8 2 0 1 8
Under Investigation 14 34 0 0 35
Unknown Fix 8 5 0 0 8

features branches, i.e., these faults never reached the stable
code branch we collected data from. With duplicates, these
16 root causes accounted for a total of 53 combinations of
test script, parameter settings, and test systems.

Code Maintenance: A total of 49 test script, parameter,
and test system combinations were related to refactoring or
maintenance of TW code, with a total of 12 distinct fixes. Two
fixes had a root cause in renamed variables where not all in-
stances of their use had been identified, which would lead to
attribute errors at run time. Another fix was related to a new
feature being developed in a separate feature branch of the
SW. Once the feature was completed, several test cases were
modified to account for some changes in behavior of the SW.
However, not all test scripts that used this feature had been
identified and modified. The remaining root causes coincided
with maintenance or refactoring of the TW code, e.g., if many
code changes had been added to a test case that failed inter-
mittently, it was assumed to be undergoing maintenance.

Under Investigation: 35 root causes (and a total of 53
combinations) were still under investigation, almost all of

which were related to A6. Two identified root causes seemed
to be related to other intermittent problems in the TW, and
TW assumptions on HW performance leading to undesired
reboots of HW.

Unknown and Overlapping Root Causes: For eight test
cases, we found no obvious fix (with 9 total combinations of
test script, parameters, and test system). Another eight had
two or more overlapping root causes (total: 8 combinations).

Duplicated Fixes: If two test cases were fixed by the same
fix or seemed to have the same root cause, they were consid-
ered duplicates, but if similar fixes had to be applied several
times, we treated them as separate fixes. More than half of the
combinations of test script, parameter settings, and test sys-
tems were duplicates (124 of 230). The most duplicated sub-
categories were SW or HW faults, under investigation, code
maintenance, and test case assumptions; only 10 of the 124
duplicates belonged to other sub-categories.

4.2 Differences Between Intermittent and Con-
sistent Tests (RQ2)

The most important differences we observed between (A) the
intermittently failing tests, and (B) the consistently failing
tests, were that the B-group contained no test case with un-
known root causes, no test case with SW or HW faults, and
no test cases that were still under investigation. On the other
hand, the A-groups had several test cases in these categories.
This provided evidence that confirmed our intuition that in-
termittency often made fault diagnosis significantly more dif-
ficult. Another difference is that the B groups have a larger
number of duplicates: group B6 had 9 non-duplicates and 40
duplicates, meaning that 9 fixes would resolve all 49 non-
passing test cases in B6. In contrast, group A13 had only
about 30% duplicates, meaning that a fix for an individual
test case was not very likely to also fix another test script,
parameter, and test system combination.

The different fixes and root causes required different
amounts of effort to identify, using the tools explained in
Section 3.3. On average, we used 1.1 tools during the inves-
tigation when finding a duplicate, and 2.9 tools when finding
a SW or HW fault. During the investigation, unknown fixes
required 4.5 tools, and the remaining six categories between
2.2 and 2.6 tools. The average number of tools required was
2.0 for both A6 and A13, and 1.2 for both B6 and B13. This
supports the hypothesis that a greater effort is needed to find
the root cause of an intermittently failing test.

5 RQ1 Revisited in Light of Related
Work

Despite starting with a data set including half a million ver-
dicts, our findings obviously do not provide a complete pic-
ture of intermittently failing tests in the embedded systems
domain, since we only investigated a single system at a single
company. In this section, we revisit RQ1 and analyze our find-
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ings with respect to previous research. In particular, we have
explored literature on intermittence in embedded and electri-
cal systems, including a 70 year old paper, literature on how
embedded systems are tested, as well as recent literature on
flaky tests.

We have found only four papers in which intermittently
failing tests have been investigated at the system level: Ah-
mad et al. [3], Eck et al. [14], Lam et al. [27], and Thorve
et al. [43]. These papers report on intermittently failing tests
in industrial embedded systems, Mozilla programs in various
operating systems, Microsoft programs, and Android apps. In
particular, they report that intermittently failing tests are not
uncommon, and that they represent a real problem. Based on
our findings in the current case study, these four papers and
other related work, we made some general observations, and
identified nine factors relevant for intermittently failing tests
in the embedded systems domain.

General Observations: The term flaky tests for the domain
of regression testing and continuous integration was popular-
ized in blog posts, e.g. [17]. Luo et al. [29] did an investi-
gation on unit tests in open source projects. They found that
many tests were flaky because of asynchronous waiting, con-
currency, or test order. Important problems with flaky tests are
they can be hard to reproduce, may waste time/involve main-
tenance cost, they can hide other bugs and they can reduce
the confidence in testing such that practitioners ignore fail-
ing tests [29, 44]. The findings of our case study support the
generalization of many of these findings to the system level
of embedded systems. We saw that finding the root cause for
intermittently failing tests is frequently more difficult than for
consistently failing tests, and that one fix for a consistently
failing test typically repairs several other issues, whereas a fix
of an intermittently failing test repairs fewer others. We also
saw that some test cases could have overlapping root causes,
i.e., they were intermittently failing for more than one reason,
which supports the idea that intermittently failing tests may
hide bugs.

Measuring Intermittence: The q-score metric is similar
to the model presented by Breuer in 1973 [10], but discov-
ered independently, and created for another domain (regres-
sion testing of SW-intense embedded systems as opposed to
describing faults in HW). As far as we can tell, Breuer was
first to use Markov chains to describe faults in a system (as
opposed to modeling a system under test). Another way of
quantifying flakiness, based on entropy, was presented by
Gao [19]. This method requires code instrumentation (code
coverage), and was evaluated using Java programs with 9
to 90 thousand lines of code. One perceived advantage of
Gao’s metric is that it can be used to “weed out flaky fail-
ures.” Labuschagne et al. [26] investigated build failures in
continuous integration environments of open source software.
As part of their data analysis, they used a Markov chain sim-
ilar to ours. They investigated open source software when a
“build” (a test suite) fails, and their use of transitions between
build states was used to identify when exactly one non-pass
build had occurred.

Factor 1: Test Case Assumptions. Test case assumptions
include issues such as poor ranges, tolerances, timing, or con-
currency. This was noted by several papers on system level
testing (e.g., [14, 27, 43]) and was also seen in our case study.
Abbaspour Asadollah et al. [2] investigated concurrency bugs
in the domain of open source SW and found that about 4% of
bugs were related to concurrency, and that they were slightly
more severe and required slightly more time to fix than other
bugs. Musuvathi et al. [32] showed that some issues in con-
current programs could consistently be reproduced if thread-
ing was monitored and controlled.

Factor 2: Complexity of Testing. As illustrated in the ex-
ample in Section 2.2.2, testing an embedded systems can be
a complex process, in particular when compared to running
unit tests without target HW. Testing of embedded systems
may require HW testing, extra-functional properties testing,
network testing, system testing, test execution on one or more
systems under test, systematic and exploratory test case de-
sign, etc. [1, 20]. Eldh et al. [16] analyzed faults in a telecom
SW and found that many faults are not discovered in unit level
testing because of complexity in testing that developers do not
always understand, and that many of the reported faults were
not related to SW. Furthermore, Ostrand and Weyuker [33]
found that different types of faults were uncovered during unit
testing than were found during system testing of an industrial
software system, concluding that both types of testing were
essential.

Regardless of whether or not the complexity of the TW is
a root cause for intermittently failing tests, it can be an exac-
erbating factor. It was noted as such by [3, 14, 43], as well
as in our case study under the HW allocation and test sys-
tem issues categories. Complexity is a challenge for testing
an embedded systems in general, not only for intermittently
failing tests [39]. To mitigate the complexity, Lam et al. [27]
indicate that the use of log file analysis may be helpful, Ah-
mad et al. [3] indicate that improved test results reporting may
be helpful, and our previous work draws similar conclusions
for testing of embedded systems in general [38]. Similarly,
Jiang et al. [25] used text mining and comparisons of indus-
trial test execution logs from system and integration level test-
ing at Huawei-Tech Inc. to reduce the burden of determining
the root cause of failing tests. The method was successfully
deployed and used in industry. Furthermore, Herzig and Na-
gappan [24] analyzed patterns in test cases at Microsoft to
predict if a failed test case had a root cause in TW, with the
goal of reducing development effort.

Mårtensson et al. [31] investigated problems and experi-
ences when striving for continuous integration of embedded
systems. They found that the test environment is a limited re-
source, leading to a tendency to construct many test systems
with custom HW. This in turn may lead to tests being inter-
mittent because of the increased maintenance burden. They
also observe that test cases that pass on simulated HW in a
local build, are not guaranteed to pass when tested on real
HW. Wiklund et al. [46] came to similar conclusions for test
automation in general.
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Factor 3: SW or HW Faults. The challenge of intermit-
tent faults in electrical systems has been known for a long
time. The earliest study we have been able to find on the
topic is from 1947 in which Cooper [12] investigated elec-
trical control of dangerous machines. In the 1960s, Ball and
Hardie [7] published a paper describing intermittent failures.
The authors write that their “experience has shown that field
failures . . . tend to be intermittent in nature.” A few years
later, Breuer [10] investigated testing of intermittent faults in
digital circuits.

A forty year old paper by Malaiya and Su [30] investigated
intermittent faults in integrated circuits. A similar study was
made more recently by Bakhshi et al. [6]. Both Malaiya and
Su, and Bakhshi et al. came to similar conclusions regard-
ing intermittent faults caused by HW: temperature, loose con-
nectors, bad soldering, corrosion, and voltage fluctuations.
Bakhshi et al. also mentions possible root causes caused by
SW, such as timing failures, processor loads, memory leaks,
and disk error.

Some bugs, sometimes referred to as Mandelbugs [22],
cannot be observed without state build-up. This causes a
possible delay between activation and symptom, may require
non-trivial timing or a particular sequence for activation, or
have a non-trivial error-propagation. The root causes identi-
fied in the ‘SW or HW faults’ factor of our case study could be
described as Mandelbugs. According to Cavezza et al. [11],
a large portion of faults in both mission-critical SW and open
source SW are due to Mandelbugs. Di Martino et al. [13] in-
vestigated repair logs from a super computer and found that it
was not uncommon for SW faults to propagate from one node
to another, whereas this was rare for HW faults. They also
found that HW faults were more numerous than SW faults,
but that HW faults were more rapidly repaired than SW faults.
Sycofyllos found that most SW-related fatal failures, regard-
less of domain, have a root cause involving not only SW, but
both SW and a user, or both SW and HW [42].

Factor 4: Test Case Dependencies. Test dependencies
may lead to intermittently failing tests of embedded systems
as well as for unit level testing. This was also observed by
e.g., [3, 14, 43, 44] which they called a test smell. As was
the case with Mandelbugs, this factor can be non-trivial for
developers to identify, and several approaches to address the
dependencies have been proposed, e.g. in [23, 48]. Anecdo-
tally, test case dependencies have been seen at Westermo, but
were not observed in our case study.

Factor 5: Resource Leaks. Resource leaks may lead to in-
termittently failing tests of embedded systems, and have been
identified as a factor for leads to flakiness in unit level test-
ing [3,14,29,43,44]. Avritzer and Weyuker [5] found similar
results for system level testing in the telecom domain. This
factor has also been observed at Westermo, as mentioned in
the motivational example in Section 2.2.2, but was not seen in
the case study.

Factor 6: Network Issues. Network issues have been
identified as a factor for intermittently failing tests by [3, 43].
Several of the fixes observed in the case study were related to

incorrect use of link breakers in the test systems, which some-
times had a negative impact on network performance leading
to intermittently failing tests. This factor is related to both test
case assumptions and the complexity of testing.

Factor 7: Random Number Issues. Incorrect use of ran-
dom numbers leading to intermittently failing tests at the sys-
tem level was identified by both [3] and [14]. Some test cases
at Westermo use random numbers, but it was not identified as
a factor for failing tests in the current case study.

Factor 8: Test System Issues. Test system issues are re-
lated to the factor of complexity of testing. In our data, we saw
that replacement of HW prototypes, interference in or mis-
configuration of the console communication, or issues with
I/O for powering HW could lead to intermittently failing tests.
Alégroth and Gonzalez-Huerta, and Vahabzadeh et al. inves-
tigate technical debt and bugs in TW [4, 44]; they found that
bugs and technical debt can be as present in TW as in other
SW. For system level testing, technical debt and bugs in TW
could very well have impacts on a test system. Wiklund et
al. [46] made a literature study on impediments for software
test automation and observed several challenges with respect
to test systems in general, including environment configura-
tion and quality issues (including false positives, false nega-
tives and fragile test scripts).

Factor 9: Code Maintenance. In 2001, van Deursen et
al. [45] spoke of problematic tests in a paper on refactoring
TW. As expected, we observed that refactoring and mainte-
nance of test code could lead to intermittently failing tests as
well as to consistently failing tests.

6 Discussion
From our case study and related work, we identified nine fac-
tors that could lead to intermittently failing tests when do-
ing system testing of embedded systems, as well as a number
of subcategories, e.g. hardware allocation and test system is-
sues. Many of the subcategories have been identified in pre-
vious work. The three top reasons for unit level flaky tests
identified by Luo et al. [29] were asynchronous wait, concur-
rency and test order dependency. These overlap with the fac-
tors we identified for intermittently failing system tests. It is
thus tempting to generalize findings for intermittently failing
tests at the unit level to system level testing. However, we also
observed important differences between their study and ours:
they observed that most test cases were flaky when first writ-
ten, which was not the case for us, and most of the flaky tests
they investigated were flaky independent of platform whereas
we saw no such indication. Instead, we observed that test
cases that failed consistently seemed to do so on more than
one test system.

We observed differences in root causes for test cases that
fail intermittently and consistently. In particular, most tests
for which the root cause was code maintenance failed con-
sistently. In addition, test cases that failed consistently were
more likely to have a shared root cause – meaning that one
fix would repair several combinations of test script, parameter
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settings, and test system, than those that failed intermittently.
We also observed that test cases that failed intermittently re-
quired more effort in terms of number of fixes than consis-
tently failing tests. They also required more effort in terms of
tools used in order to identify the root cause. However, the
differences in root causes for test cases that fail intermittently
and consistently are not easy to reason about. As an example,
we identified poor timing as a factor for intermittence. It is far
from trivial to argue that this, or any other root cause, would
lead to either intermittent or consistent failures. Could one
conclude that all test cases with any range would lead to in-
termittence, or only test cases with poor ranges, and if so, how
does one identify such a range? When a test case developer
designs a test case, can they easily identify a good range from
a poor range? In our case study, ranges in timing and temper-
ature led to intermittent failures, while others involving the
number of lines of log file to parse led to consistent failures.
Was this merely coincidental in our study, or is it because of
some characteristics of those ranges? We observe that root
causes leading to failing tests are not easily identified as risk
factors for intermittent or consistently failing tests – only as
risk factors for failing tests. We hope to explore in the future
characteristics that help to identify these sorts of differences.

Lam et al. [27] investigated flaky tests in five projects and
found that 0.8 to 8.4% of the test cases were flaky, whereas
we found 0.98% to 3.17% of the test cases to be intermit-
tently failing. However, q-score as a method to identify inter-
mittently failing has a far from perfect signal to noise ratio,
e.g., many of the identified test cases were still under inves-
tigation after the date range during which we collected data.
This might indicate that the thresholds of p-score and q-score
should be refined, or that q-score should be used with other
metrics, e.g., code churn, or for other purposes, perhaps as an
indicator of the level of intermittence of a test case in the last
month of testing. The number of fixed intermittently failing
tests and the quality of this classification can be expected to
vary with thresholds and window sizes used for p-score and
q-score. Future work could investigate suitable levels further.

An interesting question of responsibility that Ahmad et
al. [3] raise is whether or not a test case should include retries
and thereby potentially “cover up” the flakiness, or instead
expose an issue. Implementing a retry seems to be a common
correction strategy [3,9,43]. We believe that retrying is a risky
and unwise strategy that will lead to field failures because it
simply masks the problem. In effect it is ignoring a known
issue, even if it occurs only sporadically. Gao [19] strives for
filtering away results from intermittently failing tests, so that
a developer can focus on the consistently failing tests. Again,
we argue that tests that retry, or tools filtering away flakiness,
would hide “real issues” in SW or HW as opposed to “irrele-
vant” issues with TW. We therefore believe that intermittently
failing tests should be considered crucial clues for investigat-
ing bugs that appear only sporadically.

Our findings imply that practitioners encountering an inter-
mittently failing test when developing an embedded system
could ask themselves:

1. Is the test case making incorrect assumptions on ranges
or timing?

2. Is the actual testing context well understood?

3. Do test cases use shared resources without proper
cleanup?

4. Is there a resource leak in the SW?

5. Are there assumptions on network performance, avail-
ability, etc., that are not always met?

6. Are random numbers improperly used?

7. Are the subsystems of the TW (test framework, the HW,
or other peripheral systems used) well understood and
properly configured?

8. Is there ongoing code maintenance or refactoring?, or

9. Are you observing an intermittent issue in SW or HW
that needs investigation?

6.1 Validity Analysis
This case study relies on several constructs that originate in
non-academic literature, that have not been carefully defined,
or that use several overlapping definitions. Central constructs
are non-deterministic tests, flaky tests and intermittently fail-
ing tests. We also introduced the metrics q-score and p-score.
In particular, Ahmad et al. criticizes the term flaky tests be-
cause the shortcomings that lead to failures are not always
in the tests, making the term misleading [3]. Furthermore,
different studies sometimes define a flaky test with one defi-
nition, but collect data using a different metric (test cases that
produce different verdicts the same week, or over 10 execu-
tions, etc.). There is thus an important threat to construct va-
lidity, not only in this study, but in much of the prior work
on flaky and non-deterministic tests. We defined q-score as a
way to measure intermittently failing tests, and collected test
cases of interest using it. This has the advantage of making
the study more reproducible, but introduces the potential risk
of using a metric that is not yet “proven in use.” The met-
ric may also have improved the reliability of the study since
other researchers with the same test results data could collect
test cases of interest in the same way.

The fixes were identified by the first author using a number
of tools available at Westermo, and tools developed for this
study. Being one researcher in this process may be a risk to
internal validity because identified fixes could have been dif-
ferent if other researchers had done the same analysis with
the same data. The authors have been working at or with
Westermo and company data for years, so there has been a
prolonged involvement which would reduce the risk of poor
internal validity. By using several tools in the analysis, and
looking at the same data from different perspectives, there
was a form of triangulation of the phenomena which could
have reduced the threat to internal validity.
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Research results that are generalizable can be used in other
contexts, and typically industry case studies claim poor gen-
eralizability. One should thus see this study as one part of the
increasing body of knowledge on intermittently failing tests
in embedded systems, and not as the complete picture.

7 Conclusion
We studied intermittently failing tests in system level testing
of embedded systems in a continuous integration development
model. Using a novel metric, we identified groups of tests
that failed intermittently and consistently. We analyzed the
root causes and fixes of these tests and identified nine risk
factors for intermittently failing tests: test case assumptions,
complexity of testing, software or hardware faults, test case
dependencies, resource leaks, network issues, random num-
bers issues, test system issues, and code maintenance. The
most important differences between consistently failing tests
and intermittently failing tests are that the intermittent tests
did not always have a root cause that could be identified, inter-
mittent tests were sometimes indicators of software or hard-
ware faults, some intermittent tests were still under investiga-
tion after the data range we collected data from, and fixes for a
consistently failing test would also often repair other tests. We
also observe that many root causes of intermittence in system
level testing are the same as for unit level testing.
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