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ABSTRACT
Communication devices such as routers and switches play a criti-
cal role in the reliable functioning of embedded system networks.
Dozens of such devices may be part of an embedded system net-
work, and they need to be tested in conjunction with various com-
putational elements on actual hardware, in many different con-
figurations that are representative of actual operating networks.
An individual physical network topology can be used as the basis
for a test system that can execute many test cases, by identifying
the part of the physical network topology that corresponds to the
configuration required by each individual test case. Given a set of
available test systems and a large number of test cases, the problem
is to determine for each test case, which of the test systems are
suitable for executing the test case, and to provide the mapping
that associates the test case elements (the logical network topol-
ogy) with the appropriate elements of the test system (the physical
network topology).

We studied a real industrial environment where this problem
was originally handled by a simple software procedure that was
very slow in many cases, and also failed to provide thorough cover-
age of each network’s elements. In this paper, we represent both
the test systems and the test cases as graphs, and develop a new
prototype algorithm that a) determines whether or not a test case
can be mapped to a subgraph of the test system, b) rapidly finds
mappings that do exist, and c) exercises diverse sets of network
nodes whenmultiple mappings exist for the test case. The prototype
has been implemented and applied to over 10,000 combinations of
test cases and test systems, and reduced the computation time by
a factor of more than 80 from the original procedure. In addition,
relative to a meaningful measure of network topology coverage, the
mappings achieved an increased level of thoroughness in exercising
the elements of each test system.
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1 INTRODUCTION
Communication equipment such as robust routers or switches of-
ten provide a communication backbone for critical functions of
distributed embedded systems. Such systems range from small lo-
cal sensor systems to communication and management systems in
trains, aircraft or industrial automation. Due to the centrality of
some of these systems, software failures in communication equip-
ment can have critical consequences such as delays in data com-
munication, loss of productivity, or even loss of life.

Therefore, software in embedded systems needs to be reliable,
and we need to have effective and efficient ways to detect qual-
ity shortcomings. It is important to test software and hardware in
isolation, as well as testing their integration [1, 12]. One common
approach for testing of distributed embedded systems is to build
test systems, and to make these test systems available to developers
and testers to support manual or automated testing before releasing
the software and devices to end users. In order to enable accurate
assessment of non-functional behavior (such as timing), it is es-
sential that testing be performed on actual hardware rather than
simulated devices.

In the specific case of testing data communication systems, a test
system provides a configuration of physical devices such as routers
and switches connected by a set of links such as various types of
cables into a physical network topology. For example, a test system
may be made up of a switch, three routers and one link breaker,
interconnected by a set of DSL, Ethernet and serial cables.

At this level of integration, a test case consists of configuration
steps, other actions and expected results, arranged in a sequence
that exercises a certain feature or functionality of the system under
test. Naturally, a test case for a certain feature needs to be executed
on a test system that provides the feature to be tested. For example,
a test case to verify firewall functionality would require three nodes:
the firewall node, an internal node that is to be protected by the
firewall, and an external node that attempts to reach the internal
node. When the firewall is not activated, the external node should
be able to reach the internal node, but after proper activation, the
firewall should block this communication. A test framework exe-
cuting these test cases could perform the required configuration
and verification steps.
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The specific devices and interconnections required by a test case
constitute a logical network topology that must correspond to some
part of the physical network topology of a test system.

For reasons of efficiency and limited resources, companies typi-
cally do not build a specific test system with expensive components
for each individual feature being developed. Instead it is common
to build a small number of physical test systems, and use each one
to test a number of diverse features, by using different test cases.

The central result of this paper is an efficient method to deter-
mine, for a given test case, which one of the available test systems
can be a platform for execution of the test case. We call this deter-
mination the mapping problem; for each test case to be executed,
we need to map the test case’s logical network topology onto the
corresponding physical network topology of a test system.

Since test cases and test systems can both be represented as
graphs, the mapping problem is analogous to determining whether
the graph of a test case is isomorphic to a subgraph of a test system.
This is an instance of the well-known NP-complete mathematical
problem known as the subgraph isomorphism problem.1

Our work is motivated by a practical problem encountered in an
industrial environment that develops communication equipment
for distributed embedded systems. Changes are frequent for these
products, necessitating frequent modifications to existing test cases,
as well as development of new test cases. Integration and auto-
mated testing are performed nightly, and each test case must be
mapped onto an available test system before it can be executed. An
initial solution was a simple software algorithm that performed a
search for an appropriate test system to execute each test case, but
the search process was inefficient and did not typically generate
thorough coverage of the test system structure.

This paper addresses the following issues:
• Problem 1: Mappings may take excessive amounts of
time to determine. The existing mapping algorithm reg-
ularly ran into situations in which test cases could not be
mapped onto test systems in a reasonable amount of time.
Although the existing algorithm completed the majority of
mappings in a few tenths of a second, a substantial number
ran much longer, and many cases had to be aborted because
of timeouts.

• Problem 2: Inadequate network topology coverage.
The original mapper did not achieve high coverage in any
intuitive sense. A major reason is that the algorithm did not
vary the mapping of a test case to a test system. That is,
for a given (test case, test system) pair, the algorithm would
always choose the same mapping.

In order to address the above problems, we present a graph-
theoretic approach to solving the mapping problem. We then eval-
uate this approach using industrial data. The results show a sub-
stantial decrease in mapping time, an increased network topology
coverage, and thus an improved utilization of available test systems.

2 INDUSTRIAL CONTEXT
Westermo Research and Development AB (Westermo) designs hard-
ware and software for robust industrial communication devices. An
1The formal definitions of isomorphism and subgraph isomorphism are given in
Section 3.

(a) An example of a possible customer installation. This network
layout contains many forms of redundancy, which is important for
many customers.

(b) An example of a Westermo test system, built for nightly testing.

Figure 1: In order to test possible customer installation (a), a
number of test systems have been built (b).

example of Westermo hardware is robust Ethernet switches while
an example of Westermo software is the industrial network oper-
ating system – Westermo Operating System (WeOS). A possible
scenario for an end customer is to have an installation like the one
in Figure 1a, with four principal components: (i) Several devices
(or nodes) connected in a ring in the network topology. The ring
provides redundancy in case a node goes down, or a cable is lost,
perhaps due to an accidental cut during maintenance. In such cases,
the other units in the ring can still communicate. (ii) A second ring
just like the first. (iii) A primary and a backup link between the
rings so that any two nodes in the rings can communicate with
each other. (iv) Uplinks to a central facility where an operator can
manage the network.

2.1 Test Systems
To provide rapid feedback for ongoing software development of
WeOS, software is tested nightly for regressions using a test frame-
work that has been developed and supported over several years. The
nightly testing is performed on a number of test systems. Each test
system is set up using a number of nodes (i.e., devices) in a specific
network topology. Figure 1b shows an example of one such test
system. Over the years, many different test systems have been built
at Westermo to test combinations of unique hardware products,
unique software protocols, and/or unique customer use cases.
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(a) Size of test systems.
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(b) Size of test cases.

Figure 2: The sizes of test systems and test cases in number
of nodes.

In a typical test system, 4 to 25 devices run WeOS. We shall refer
to them as devices under test (DUTs). Additionally, the test system
may include other nodes with specialized functionality that do not
represent devices, but rather allow the user to simulate scenarios
that might be encountered in the field. These are known as link
breakers and are custom-built to be able to simulate scenarios such
as cable deterioration by mechanical wear and tear, rust, pests or
accidental destruction caused by human factors. Overall, it is typical
to have systems ranging in size from seven to dozens of nodes.

The test system in Figure 1b has nine WeOS DUTs, one server,
and nodes of other types resulting in about a dozen nodes. Figure 2
shows the wide range of sizes of test systems and test cases studied
in this paper. The seventeen test systems studied ranged in size
from 7 to 44 nodes. Among a group of 607 test cases, approximately
20 required nearly 40 nodes, the great majority required 5 or fewer
nodes, and the smallest tests required only 1 node.

Between a pair of nodes, there may be zero, one or many links
(edges). When more than one edge is present, it is possible to test a
communication protocol named link aggregation, which is popular
in applications where redundancy is important. Both the ports on
the nodes and the types of cables may vary. For example, some
cables may be optical fibers, while others are copper cables. Some
ports on some nodes support Ethernet up to a specified speed,
while other ports are more limited. The communication protocols
supported by different hardware types may also differ. Although
physical reconfiguration of the test system is undesirable, this does
happen occasionally, for example when a prototype device is re-
placed with one from production.

2.2 Steps in Nightly Testing
Westermo employs a continuous integration development process,
in which new features and changes are developed in separate par-
allel development branches. Code changes for WeOS are submitted
to the source code repository during normal working hours. Each
night, the different development branches are automatically built
and tested. The overall steps needed for nightly testing are described
below and shown in Figure 3:

(1) Using the most recent (successful) commit of each develop-
ment branch, a new WeOS image to be tested is built for
each type of Westermo device.

(2) For each development branch, test cases are selected and
prioritized into a branch-specific test suite using the Suite-
Builder tool, described in [8, 9]. Each branch-specific test
suite is then assigned an execution slot on a specific test
system.

(3) Next, for each test system, and for each test suite associated
with that test system, the DUTs are upgraded to the WeOS
images under test associated with that suite, and the test
cases in the suite are executed one by one according to the
following procedure:

(a) The nodes of the test case are mapped onto a possible
subset of the nodes of the test system using the mapper
described below.

(b) The test system devices are reset to a known state.
(c) The test case is executed.
(d) The test verdict is reported to a test results database.

2.3 Original Mapping Implementation
The network topology of each test system is written in a configu-
ration file in the YAML language [2], to allow the test framework
to understand what nodes there are, and how they are connected.
These files represent the physical network topology of a test sys-
tem. The test cases have their requirements (in terms of nodes,
edges, models of hardware and so on) described in a similar file
that represents the logical network topology of a test case.

Prior to executing a test case, a way to map the logical test
case network topology onto the physical network topology of a
test system must be found. This mapping is used to configure the
physical network topology to allow it to run the test case. The
nodes that are not in use in a certain mapping are configured in
such a way that they cannot disturb the execution of a test case:
all non-participating ports and communication protocols that were
activated by previous test cases are disabled.

The original mapping algorithm has several important shortcom-
ings. It is so slow that when it searches for a mapping for certain
test cases without a timeout mechanism in place, it can continue
for days, and require human intervention to terminate. Another
deficiency of the original mapper is that it always returns the same
mapping for a given (test case, test system) pair. Statistics are avail-
able that show how frequently a particular node has been used for
a certain test, but the mapper does not utilize that information to
improve diversity or variability in testing over time.

Since most test cases run in less than a few minutes, it was
considered wasteful to spend more than 10 to 20 seconds on finding
a mapping before the start of the test case. For slow mappings, a
special mapping file can be written to enforce a certain mapping.
Creating and maintaining these files require labor-intensive manual
work. In addition, updates to the mapping files are not always
coordinated with updates of the test systems, which can lead to the
testing framework attempting to use a mapping that has invalid
information about the latest test systems.

3 PRELIMINARIES
The network topology mapping problem involves the identification
of a physical subset of a test system needed to run a logical test
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Figure 3: Automated nightly testing procedure.

case on real hardware. In this section we introduce mathematical
concepts for discussing and presenting a solution to this problem.

According to standard terminology in graph theory, e.g. [11], a
graph is built up of vertices (or nodes), and edges (or links). Two
vertices are neighbors (or adjacent) if they share at least one common
edge. The degree of a vertex is the number of neighbors it has. A
walk is a sequence v0, e1, v1, ..., vk of graph vertices vi , and graph
edges ei such that for 1 ≤ i ≤ k , the edge ei has endpointsvi−1 and
vi . If there are no repeated edges in a walk, and v0 is the same as
vk , and no other vertices are repeated, then the walk is a cycle. An
even cycle has an even number of vertices while an odd cycle has
an odd number of vertices.

Two graphs G and H are isomorphic if there is a one-to-one
correspondence between the nodes ofG andH such that the number
of edges joining any two nodes of G equals the number of edges
joining the corresponding nodes of H . A graph H is a subgraph of
a graphG if (i) each of its nodes belongs to the node-set ofG: V(G),
and (ii) each of the edges in H belongs to the edge-set of G: E(G).
The subgraph isomorphism problem, for two graphs G and H , is to
determine whether G contains a subgraph that is isomorphic to H .
For example, in Figure 4, if the nodes of H1 are associated with the
nodes of G0 as follows: {(A, 2), (B, 4), (C, 5), (D, 6), (E, 7), (F , 10)},
then the subgraph of G0 with the nodes {2,4,5,6,7,10} and the edges
between those nodes is isomorphic to H1.

For the physical systems that are being tested in our environment,
not only must there be a simple alignment of nodes and edges when
identifying subgraphs, there are additional constraints that often
come into play, further complicating the algorithm. In particular,
some nodes and edges might have attributes that prohibit certain
otherwise legal mappings. For example, some nodes may be PCs
while others are link-breakers. Similarly some edges might be serial
cables while others are Ethernet cables. Therefore, when devising
a mapping, not only do we have to consider the identification of
a subgraph within a graph, we also have to make sure that the
part of the system that we are mapping the test case onto, has
the right attributes. In the prototype implementation described
in this paper, only the most important node attributes have been
implemented. We expect that extending the algorithm to include a
broader set of attributes will further improve the performance since
the search space will be further limited. We intend to enhance the
implementation in this way, and assess the impact on performance.

4 RELATEDWORK
The general subgraph isomorphism problem is a difficult, NP-
complete problem. Bonnici et al. [3] present an approach for solving

the subgraph isomorphism problem using a combinatorial search
method. This serves as a starting point for the algorithm presented
in this paper. They also discuss related approaches, including the
work by Ullmann [10]. While we are unaware of any research
that directly addresses the problem we describe in this paper, it
is certainly true that graph theoretic concepts have been used in
testing-related papers. For example, in early work, Stickney [7]
used control flow graphs and cyclomatic trees as test data selection
criteria. Similarly, Rapps and Weyuker [6] used graph theoretic
ideas in developing their dataflow hierarchy of test data selection
and adequacy criteria. In more recent work, Nandi [5] describes the
generation of network topologies for use in testing. Another recent
paper by Mariani et al. [4] combines graph theory algorithms and
machine learning to locate faults in cloud systems. To the best of our
knowledge, subgraph isomorphism has not been used to increase
network topology coverage in the context of software testing.

5 APPROACH
LetG be the graph in which we want to find one or many instances
of the subgraph H . In our industrial setting, G represents a test
system, and H represents a test case. We divide the algorithm into
four parts:

(1) Preprocessing and Candidates: identify node candidates
and remove unused parts of G.

(2) Unmappability tests: stop the searchwhen it can be shown
that H cannot be found in G. (In some cases this step also
further limits the candidate sets created in step 1).

(3) Search strategy: order the candidates as to (i) limit the
search space, (ii) rapidly find a match, and/or (iii) find a
match while improving network topology coverage.

(4) Search tree: build the mapping, one node at a time, by con-
stantly evaluating if what has been built so far is meaningful.

The search process builds a search tree of pairs of nodes from H
andG . At the start of the algorithm, the search tree is empty, and if
the search completes successfully, one or more mappingsM(H ,G)
can be constructed by traversing the search tree.

Next, we use the graphs in Figure 4 to illustrate the details of
the various steps of the search algorithm.

5.1 Preprocessing and Candidates
The following preprocessing steps reduce the size of the target
graph G, and create a set of candidate nodes for each node in H .
These candidates are central to later stages of the algorithm.
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Figure 4: The H graphs represent test cases. G0 and G1 represent test systems. The primed versions of G0 represent successive
stages of preprocessing.

It is obvious that a node of H can only be mapped to a node ofG
with the same or higher degree. This observation is the inspiration
for successively removing any node of G that cannot possibly be
a candidate for mapping. For example, to map H2 onto G0, only
nodes of degree 2 or higher are useful. The sequence of steps that
successively removes leaf nodes from G0 yields the graphs G ′

0 (af-
ter removal of 3 and 8), G ′′

0 (removal of node 7), and finally G ′′′
0

(removal of node 6).
In addition to reducing the candidates based on degree, we also

consider constraints on the nodes to limit the number of candidates.
As mentioned in Section 3, a PC cannot be mapped to a link-breaker
(node constraint), and a serial cable cannot be mapped to an optical
fiber cable (edge constraint). In our prototype implementation, we
only consider node constraints. In future work we will also include
edge constraints.

In some cases, this preprocessing will be sufficient to show that
a subgraph H cannot be found in G, such as when H contains a
cycle and G does not. The preprocessing algorithm steps are:

(1) For each node z in H , identify all nodes w in G such that
z can be mapped to w with respect to degree: d(z) ≤ d(w).
These are the candidates of z.
For example, in Figure 4, when mapping H1 onto G0, the
candidates of node C are {4, 5}.

(2) For each node z in H , identify all nodes in the candidate set
of z that are not of the same type as z and remove them from
the candidate set.

(3) For each nodew in G, removew if it is not a candidate for
any node z of H .

(4) If any node was removed from G, repeat from step 1, other-
wise stop.

5.2 Unmappability Tests
After creating the reduced version ofG , any of the following checks
can be used to stop the search as soon as it is determined that no
mapping is possible, thereby saving the resources needed to create
and parse a large search tree.

5.2.1 Counting Nodes and Edges. Stop if there are insuffi-
cient nodes or edges in G.

5.2.2 Degree Sequence. The degree sequence of a graphG is
the list of the degrees of the nodes ofG in descending order. ForG0
in Figure 4e, the degree sequence is {4, 4, 2, 2, 2, 2, 2, 2, 1, 1}. For H
to be mappable to G, it must be the case that the degree sequence
of G dominates the degree sequence of H , i.e., when the nodes of
both graphs are arranged in degree sequence order, then

deд(zi ) ≤ deд(wi ),∀i ∈ {1, 2, . . . , |nodeset(H )|}
For example, if four is the highest node degree in H , and there

are five nodes in H with degree four, then there must be at least
five nodes in G whose degrees are four or greater.

5.2.3 Mapping of Odd Cycles to Odd Cycles. Many of the
test case and test system graphs include cycles of nodes. If a test
case contains a cycle with k nodes, then the test system must also
contain at least one cycle with k nodes. The nodes of H that are
part of the cycle can only be mapped to nodes of G that are part of
such a cycle. This information can further limit the search space by
reducing the candidates of nodes in H .

To address this, we use powers of the adjacency matrices of G
and H , and walks, in order to find and compare lengths of cycles
within the graphs.

The adjacency matrix, G, of a graphG , is a matrix representation
ofG such that дi, j is equal to the number of edges between nodes i
and j ofG , which is equivalent to the number of ways to go directly
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from node i to node j. Matrix multiplication extends this to longer
walks from i to j . Namely, element дi, j of Gk represents the number
of walks of length k from node i to node j.

A non-zero value for element дj, j in the diagonal of Gk means
there is a walk of length k from node j to j . If k is an odd integer, that
walk must include a cycle of length at least 3. In addition, because
a cycle can be traversed either “clock-wise” or in the opposite
direction, the diagonal element will be at least 2. However, if k is
even, a non-zero value doesn’t necessarily indicate a cycle, because
a walk of even length from j to j could simply involve going back
and forth between a node and a neighbor.

We use the odd cycle case in order to further decrease the number
of possible candidates of the nodes of H :

(1) CallG the adjacencymatrix ofG , andH the adjacencymatrix
of H .

(2) For each odd powerk , (3, 5, 7, . . . ,n), wheren ≤ |nodeset(H )|,
compute Gk andHk . For practical purposes, we limit n ≤ 21.

(3) Stop the mapping if there is a larger number of non-zero
elements in the diagonal of Hk than in Gk , as this means
that there are more nodes involved in cycles of length k in
H than in G.

(4) Update the candidates of a node z in H so that candidatesw
ofG are removed ifw is not part of a cycle of length k when
z is part of such a cycle.

Using the adjacency matrix in this way, will always correctly
eliminate candidates for the shortest cycle of odd length, if such a
cycle exists. It may, however, fail to remove candidates for larger
values of k , when a small cycle exists.

5.2.4 Candidate Depletion. For each node z in H , if the can-
didate set of z is empty, stop the search.

5.3 Search Strategy
Our algorithm uses search trees to try to identify potential map-
pings, based on an approach described by Bonnici et al. in [3]. Each
step in the search is an attempt to map one more node in H to a
node in G. A successful search will represent a complete mapping
by a path from the root to a leaf that contains one pair for each
node in H . Depending on the order in which nodes are assessed for
a potential mapping, the search tree may grow larger or smaller.
Because neighborhoods of nodes in H must be preserved in an
isomorphic subgraph of G, we only consider adding the pair (z,w)
to the mapping if the neighbors ofw in G include mappings of all
the neighbors of z in H . Whenever it becomes impossible to extend
a path with a new pair, then that path terminates and we backtrack
to the last potential pair in the tree that is still viable. Figure 5c
and 5d shows these as dashed hexagonal nodes, such as (C1, 5) and
(C2, 6).

Below, two approaches of the search algorithm are presented.
Both strategies terminate if no mapping can be found. Strategy 1
finds a mapping if one exists, and then terminates. For Strategy 2,
prior mappings can be given as input data, so that this approach re-
orders the candidates of the nodes inH , and then resumes searching
for further mappings. When running Strategy 2 repeatedly different
mappings are sought. In both strategies, the nodes of H are at first
placed in order of the fewest candidates. If two nodes have the same

number of candidates, the one of higher degree is placed first. If
they have the same degree, they are placed in alphabetical order
based on the name of the element they represent.

The idea is to map nodes with few candidates and high degree
early, under the assumption that these are hardest to map, and that
having few candidates early makes the search space smaller. We
illustrate the first approach with an example in section 5.5, and the
second approach with another example in section 5.6.

5.3.1 Strategy 1: Bonnici-Inspired Search. This strategy or-
ganizes the search as follows:

(1) Sort the nodes ofH in ascending order of the number of their
candidate nodes inG . If two nodes have the same number of
candidates, then place the node with the higher degree first.
If two nodes have the same number of candidates and the
same degree, then order them alphabetically by name.

(2) Sort the nodes in each candidate set ofG in descending order
by degree. If two candidates have the same degree, then order
them alphabetically.

5.3.2 Strategy 2: History-Aware Search. The second strat-
egy organizes the search in a slightly different way:

(1) Order the nodes in H as in Strategy 1.
(2) Order the candidate sets so that, when considering a node

z in H to be mapped to a nodew in G, place thew with the
lowest number of previous mappings of z first. If two nodes
have the same number of previous mappings, use the same
ordering as in Strategy 1.

5.3.3 Consequences of Non-History-Aware Search. Con-
sider the graphs for the test case H3 and test system G1, in Fig-
ures 4c, and 4i. The old mapper and Strategy 1 of the new mapper
will always map this test case onto the same nodes, perhaps 11 and
12 with the following mapping: {(S, 11), (C, 12)}.

However, there are many motivations for a search that favors
different mappings: first of all, the DUTs inG are individuals – they
are not identical and so wewant to assure that each type of DUT has
been tested. The same is true for the edges of G. One cable might
be connected to a port on the same printed circuit board (PCB) as
the CPU, while another might be on a separate PCB, far from the
CPU. Packets coming in on this port would need to communicate
through some chain of internal components in order to reach the
CPU, leading to slightly different timing. Even when all DUTs are
of the same hardware type and come from the same production
batch, it is still desirable to run the test case on different nodes,
simply to increase port coverage. However, the DUTs are typically
not identical in Westermo’s test systems, because a test system is
typically built to cover a range of products.

To conclude, using the samemapping is wasteful, since it may fail
to trigger issues that might be identified using different mappings
representing different devices and connections. We expect that
increased network topology coverage will lead to improved fault
detection.

5.3.4 DUT Coverage – a Type of Network Topology Cov-
erage. Clearly network topology coverage is fundamentally differ-
ent from typical software testing coverage metrics, which generally
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aim for coverage of source code lines, branches in if/else-statements,
identified risk factors, artifacts such as requirements, etc.

A metric based on covering all possible mappings might at first
seem like a suitable network topology metric. However, the number
of combinations often grows rapidly to unreasonable numbers, even
for a test case of moderate size. For example, we investigated a test
case with 4 DUTs and one PC, and counted the number of ways
it could be mapped onto the 17 available test systems. We found
that for each test system there were between 8 and 1288 unique
mappings. Given that this testing is done nightly with a fixed and
limited amount of available time, there is generally not enough time
to run every test case even once. Consequently, a more pragmatic
notion of coverage is required.

In the test systems at Westermo, some nodes have software with
very little evolution over time, while other nodes, the DUTs, run the
frequently changing WeOS software. This is the rationale behind a
metric that measures coverage in terms of the percentage of DUTs
used for a (test case, test system) combination. We call this “DUT
coverage”. Ideally this metric would increase over mappings and
reach full coverage after a relatively small number of iterations.

As an example, we could consider the graphs G1 and H3 in Fig-
ure 4. For a full theoretical coverage we would need eight mappings
(there are four ways to place the server node, S , of H in G, and for
each mapping of S the client node,C , could either be in a clock-wise,
or counter clock-wise position, relative to S). For full DUT coverage,
two mappings are needed. One possible mapping places the nodes
of H onto nodes 11 and 12 ofG; the alternative mapping would use
nodes 13 and 14.

The heuristic we use to achieve increased DUT coverage tries to
map each node z of H onto every node ofG by favoring candidates
with the lowest prior coverage of z over candidates with a high
prior coverage.

5.4 Search Tree
The search starts with a dummy root node in a search tree, and
the nodes of H sorted as described above. The process can be seen
as constructing a search tree in which walking from one step to
the next means adding a new pair (z,w) of nodes from H and G
into the tree. If the search ends with every node of H successfully
mapped to a unique node ofG , the collection of valid pairs of nodes
constitutes a mapping M . If any node(s) of H cannot be mapped,
then the search fails.

(1) At the start of the search, all nodes are unmapped, and z0 is
the first node in the ordering of H .

(2) After the nodes z0, z1, . . .zm−1 have been mapped, their
images inG arew0,w1, . . .wm−1, respectively, and the most
recent pair in the mapping is (zm−1,wm−1).
If there are no unmapped nodes left in H , then the search
ends, and the current mapping is a solution (adjacency has
already been verified).

(3) Otherwise, call the first unmapped node zm , and examine
whether it has any unmapped candidates. If every candidate
of zm has already been mapped from another node of H ,
then it is not possible to extend the mapping further from the
pair (zm−1,wm−1). Mark that pair as dead in the search tree,

backtrack up one level in the search tree and try extending
from the next sibling pair, at Step 2.

(4) If zm does have unmapped candidates, call themwm1,wm2,
. . . . In order to determine whether a candidatewmj is a possi-
ble mapping of zm , we have to check whether the mappings
of the neighbors of zm in H are neighbors of the candidate
wmj in G.
• For eachwmj :
– for each i in (1, ...,m − 1): if zi is a neighbor of zm , but
wi is not a neighbor ofwmj , or if there are fewer links
betweenwmj andwi (inG) than between zi and zm (in
H ), then add (zm ,wmj ) to the search tree, mark it as a
dead pair (dashed hexagonal in Figure 5c), and continue
to the next candidate of zm .

– If (zm , wmj ) is compatible with all previous mapped
nodes, then mark the pair (zm , wmj ) as a live pair (el-
lipses in Figure 5c)

• If zm has been successfully mapped, let wm be the first
successful target node. Add the pair (zm ,wm ) to the search
tree, return to Step 2, and step down into this pair.

• If none of the candidates of zm can be mapped, then mark
(zm−1,wm−1) as dead in the search tree, backtrack up one
level in the search tree, and try extending from the next
sibling pair, at Step 2.

• If all siblings have been marked dead, then backtrack an-
other level towards the root, and return to Step 2.

(5) If all immediate descendants of the root are dead, there is no
solution.

If a valid solution is found in Step 2, then the algorithm may be
stopped if one mapping is sufficient. If all possible mappings are
sought, then the algorithm continues by backtracking from live
leaves of the search tree to the root node.

5.5 Example 1: Bonnici-Inspired Mapping
As an illustration of the Bonnici-inspired mapper algorithm, we
map the graph H4 onto G0, see Figure 5. H4 could be thought of as
a test case for verifying some redundancy protocol in which the
designer of the test case wants a server (node S) and two clients (C1
and C2) to communicate through one of two relays (RS and RN ).

Before the first step, the search tree contains only a dummy root,
and the nodes from H to be mapped are sorted: {S , C1, RN , RS ,
C2}. S is first because it has the greatest degree (largest number of
neighbors), and the smallest set of candidates. C2 is last because it
has the largest number of candidates and lowest degree.

(1) We add (S, 4) to the search tree. We cannot rule this mapping
out since there are no neighbors in a graph of only one node.

(2) Now we consider C1 with the candidates set of all nodes in
G except 3 and 8. After removal of the already mapped 4, a
total of seven candidates remain. The first candidate ofC1 is
5, which is an impossible mapping, but the algorithm does
not know this yet. We add the pair (C1, 5) to the search tree,
and it cannot be ruled out because none of the neighbors
of C1 in H have been mapped yet. At this point in time the
mapped graph only has two isolated nodes S and C1.

(3) So far we have mapped S onto 4, and C1 onto 5. We next
consider RN . The algorithm first tries to map it to 1, but
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Figure 5: Test case H4, test system G0, and the search tree
used to find the first and second mapping of the test case
onto the test system.

discovers that its neighbors are not consistent (because RN
is a neighbor ofC inH , but 1 is not a neighbor of 5 inG). The
same will be true for 2 and all other remaining candidates of
RN because C1 could never have been mapped to 5 once S
is mapped to 4.

(4) We now backtrack from (C1, 5) to (S, 4) and try to map C1
onto 1. We discover, again, that RN cannot be mapped.

(5) We backtrack again, and try to map C1 onto 2; this is con-
sistent, since the mapping so far only has the two isolated
nodes S and C1.

(6) We again turn to RN , and try to map it to 5. This time the
neighbors of the mapped nodes are OK, so (RN , 5) is added
to the search tree and the algorithm goes forward.

(7) The next node of H is RS which, after removing already
mapped candidates, has the following candidates: {1, 6, 7, 9
10}. The pair (RS, 1) is OK so we add it to the search tree as
a live pair, and move to this pair.

(8) The final unmapped node of H is C2, with unmapped can-
didates: {6, 7, 9, 10, 3, 8}. Trying to map C2 to 6 and 7, the
neighboring nodes cannot be satisfied, but the pair (C2, 9) is
acceptable.

(9) We are now standing in the pair (C2, 9) and have successfully
mapped all nodes of H4 to nodes in G0. By backtracking
from this pair in the search tree to the root, we have a valid
mapping.

5.6 Example 2: History-Aware Mapping
We next provide an example of the second search strategy, again
mapping H4 onto G0, but this time taking the previous mapping
into account. In this example we will refer to Figure 5d.

Before the search begins, the nodes of H are sorted in the same
way as in the previous approach, but the candidate sets are now
different. For example, the candidate set of S has the order {5, 4},
because S has previously been mapped to 5, but not to 4.

(1) The first pair to be added in this round of the mapping is
(S, 5). At this point there are no prohibitions to this pair.

(2) Next we try to add (C1, 4). This will not work, but the algo-
rithm is not aware of this yet.

(3) As in the earlier example, we will not be able to map RN to
any node of G0 when (C1, 4) is a pair in the search tree, so
we terminate the search and backtrack.

(4) Next we try mappingC1 to 1. Again, the graphs in the partial
mapping M now contain only isolated nodes, so all neigh-
borhoods are consistent and we can continue.

(5) We try to map RN onto 4, and this is OK.
(6) Now we try mapping RS onto 2 and this is again OK.
(7) Finally we try to map C2 onto 6 and since this is accept-

able, we can backtrack from this pair, (C2, 6) and have found
another mappingM .

5.7 Implementation
The implementation of the new mapper was coded in two layers: a
generic layer of about 700 Python statements for graphs in general,
and an additional 200 statements for generating test data. On top
of this layer, a Westermo-specific part was added for generating
graphs from files in the company-specific YAML format.

The code has four major classes: (i) Graph, a class to represent
graphs, and export a representation to dot-format for simple com-
pilation into PDF with graphviz. (ii) a Tree class for handling the
search tree, (iii) Mapper is the class that implements the search
strategies and creates the mappings. (iv) TestGraphs is a library for
rapidly generating test graphs for running the mapper.

In addition to the standard Python library, the only additional
libraries used were numpy for generating and working adjacency
matrices, and yaml for parsing network topology files. Self-tests
for the graph and tree class were implemented in doctest, and
matplotlib was used to generate plots for visualization.

An example of an interactive Python session where H1 is mapped
onto G0 follows:
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(b) New mappings.

Figure 6: Distributions of mapping durations. Both plots
show the same number of mappings.

>>> from network import Graph
>>> from mapper import Mapper
>>> from testdata import TestGraphs
>>> TG = TestGraphs()
>>> G = TG.graphs['G0']
>>> H = TG.graphs['H1']
>>> M = Mapper(G, H, find_all=False)
[...]
>>> (hmap, gmap, _) = M.solutions[0]
>>> print 'H: %s\nG: %s' % (hmap, gmap)
H: ['F', 'E', 'B', 'A', 'D', 'C']
G: [3, 2, 9, 1, 5, 4]

6 EXPERIMENTAL EVALUATION
In this section we experimentally evaluate the new mapper in com-
parison to the old one, using the physical network topologies of 17
test systems and the logical network topologies of 607 test cases.
Both the test systems and the test cases are in use at Westermo. In
particular, we focus on how the new mapper compares to the old
mapper with respect to the two problems stated in the Introduction.

For Problem 1 (Excessive time to determine some mappings),
we evaluated the execution time of the old mapper versus the new
mapper (Section 6.1). For Problem 2 (Inadequate network topology
coverage), we examined the coverage achieved over iterations for
the old versus the new mapper (Section 6.2). In both experiments,
each of the 607 individual test cases was mapped onto each of
the 17 test system topologies. Consequently, we ran more than 10
thousand instances of the old and the new mapping algorithms. If
an instance ran for more than 20 minutes (1200 seconds), it was
aborted, and considered unmappable.

6.1 Problem 1: Slow Mappings
Both the old mapper and the new mapper are implemented in
Python. However, all measurements were done outside of Python,
using a bash script. Thus, the measured time duration includes not
only the time to search for the mapping, but also the time needed
for starting the Python interpreter, parsing files of the topology
descriptions for both the test case and test system, and allocating
data structures for the graphs. This overhead is about 80 to 100 ms
for each (test case, test system) pair. In practice, both the old and

Table 1: Durations of mappings for old and new approaches,
in seconds.

Mapper total min max mean median std.dev.
Old 161099 0.05 1200 15.6 0.11 129.5
New 1928 0.07 242 0.19 0.10 3.0

the new mapper required only 100 ms for a very large number of
mappings. These mappings were not considered a primary concern
for Westermo. The new approach is rather aimed at reducing the
time needed for the minority of mappings that required the longest
amount of time.

Because of the excessive time required for these mappings, the
total mapping time with the old implementation for the 10,319
combinations of test cases and test systems was about 44.7 hours.
The new implementation took 33.1 minutes to complete the same
10,319 combinations, representing a roughly 84-fold total speedup.
On average, the old implementation required 2.6 hours to map the
607 test cases onto each test system, while the new implementation
averages 1.9 minutes per test system.With themuch higher speed of
the new implementation, many additional test cases can be mapped
and run on each test system every night. Figure 6 illustrates the
distributions of the durations achieved with the different mapper
implementations, using a log scale.

The minimum and median mapping durations were about the
same for both the old and the new method: less than .07 seconds for
the minimum and less than 0.11 seconds for the median. The old
method accomplished 95.5% (or 9860) of the mappings in less than
1 second, while with the new method the corresponding number
was 99.8% (or 10302). Thus we see that almost all test cases can be
mapped onto test systems very quickly using either approach.

However, using the old implementation, the maximum duration
was the timeout of 20 minutes, and 117 mappings required more
than 1000 seconds. With the new implementation, only 3 mappings
required more than 100 seconds, and the maximum duration was
242 seconds. It was therefore never necessary to abort a test case
mapping because it took too long using the newmapper. This result
is significant because those long-running test cases sometimes
prevented the complete running of the entire test suite overnight.
In fact, this was a major part of the motivation for seeking a new
mapper implementation.

The total, minimum, maximum, mean, median and standard de-
viation of all mappings are shown in Table 1.

We envision that refining the new mapper software to handle
all the requirements of all test cases would impose a minor penalty
on all test cases, but would likely improve performance in the
worst cases, in particular when requirements reduce the number of
candidates, and also the size of the search tree.

6.2 Problem 2: Inadequate Coverage
Because the old mapper always identifies the same mapping for
a given (test case, test system) pair, it can miss many potential
mappings of a test case. In Section 5.3 we proposed a history-aware
search strategy to make H “move around” over G to increase the
test coverage of the network topology. In order to evaluate this,
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(e) 5 iterations.

Figure 7: Distribution of DUT coverage after from one to five iterations, using the new history-aware search strategy.

we repeatedly ran the history-aware version of the new mapper
for each (test case, test system) pair, Unmappable pairs, and test
cases that do not include any DUTs at all were excluded from the
results, since coverage, as defined in this paper, is not meaningful
in those cases. After excluding these pairs, more than 7400 pairs of
test cases and test systems were used to evaluate DUT coverage.

Figure 7 illustrates the increase of DUT coverage as the number
of iterations increases, with the x-axis representing decile coverage.
Figure 7a shows the distribution after one iteration. At this point,
the median (test case, test system) pair achieves 33% DUT coverage.
Note that for the single iteration case, the old mapper implemen-
tation would get the same result, as would the non-history-aware
version of the new mapper. Figures 7b, 7c, 7d, and 7e, show the
improving coverage distribution (shifting towards 100% DUT cov-
erage) as the number of iterations increases for the history-aware
mapper. After only 5 iterations, the median pair of test case and
test system is at 100% DUT coverage.

In practical terms, if we assume each test case is executed once
per test system each night, and if the history-aware mapper keeps
track of mappings from previous days, the median DUT coverage
would gradually increase towards 100%. In the example of Figure 7,
100% is achieved after 5 days; for other cases it would take less or
more time, depending on the number of test cases and complexity
of the test systems. Empirical studies with additional systems could
be carried out to learn likely rates of achieving high coverage, and
to investigate how those rates are affected by the size and com-
plexity of test systems and test cases. In general, the new mapper
should produce improvements in coverage compared to the old
implementation, and a consequent increase in fault detection.

7 DISCUSSION AND CONCLUSIONS
In this paper we have described and evaluated a new method for
improving test coverage of embedded communication devices in
network topologies. The new method is significantly faster than
the old method, and by taking historic mappings into account, test
coverage increases rapidly over time.

Manual intervention is needed to cope with the shortcomings of
the old method. The speed of the new method should significantly
reduce the need for manual work.

Both of our mapping strategies look for solutions to the sub-
graph isomorphism problem, and are modifications of the search
tree process presented by Bonnici et al. [3]. The approach in [3] is es-
sentially a breadth-first attempt to build all possible mappings that

discards partial mappings that cannot be completed. Our approach,
in contrast, is depth-first in the sense that it constructs a mapping as
far as possible, backtracking to the first place another alternative is
feasible when a partial mapping cannot be completed. Strategy 1 at-
tempts to find a single mapping from test case to test system, while
Strategy 2 is a novel extension that attempts to find previously un-
used mappings for better network coverage. Additional innovations
of our approach are the preprocessing and unmappability steps that
reduce the search space before applying the subgraph matching
process. In particular, reducing the test system graphs, mapping
cycles onto cycles, and the history aware search strategy are all new
features. Furthermore, our implementation was developed from
scratch without access to any previous code.

Bonnici et al. originally developed their algorithm to be used for
bioinformatics applications, and we have modified the algorithm
and described its usage in a different environment. It is clear that
with at most minor modifications, our algorithm could be adapted
for other domains that rely on a network structure, including trans-
portation and financial networks.

The newmapper is a prototype implementation and some aspects
of the filtering process for candidates could be further improved.
We expect that in a future implementation, this will impose a small
penalty in the performance of all mappings, cause no significant
change in the general case, and yield a significant improvement
in cases for which improved candidate reduction would lead to a
reduced search tree. We expect that this will further decrease the
amount of manual intervention necessary as compared to the use
of the older method.

The approach we propose can, of course, be improved, and fu-
ture work will include: (i) taking all attributes on nodes and edges
into account, (ii) work on candidate reduction for cycles of even
length, [13], and (iii) comparisons of performance when using ap-
proaches other than combinatorial search. However, as shown by
our experimental assessment, even the prototype version can make
a measurable difference in the speed and comprehensiveness of the
testing process in practice.
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